
Supporting Information:

High thermoelectric performance in Cu₂Se superionic conductor with enhanced liquid-like behaviour by dispersing SiC

Jingdan Lei^a, Zheng Ma^a, De Zhang^a, Yanqun Chen^a, Chao Wang^{*a}, Xiaoyun Yang^c, Zhenxiang Cheng^{*a,b}, and Yuanxu Wang^{*a}

 ^a Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
^b Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong 2522, Australia
^c Business School, Zhengzhou Technology and Business University, Zhengzhou, 451400, China

*Corresponding authors: wangchao@vip.henu.edu.cn; cheng@uow.edu.au; wangyx@henu.edu.cn

Results and Discussion:

Fig. S1. (a) The temperature dependence of Lorentz number and (b) calculated carrier thermal conductivity for Cu₂Se/x wt% SiC (x=0, 0.025, 0.05, 0.1 and 0.2) samples.

Fig. S1. shows temperature dependence of Lorentz number and calculated carrier thermal conductivity for Cu_2Se/x wt% SiC (x=0, 0.025, 0.05, 0.1 and 0.2) samples. Similar phenomenon happened to Zhu et al.'s report ^[1] and $Cu_{1.8}S$ system ^[2, 3] and so on.

References

- [1] Y. B. Zhu, B. P. Zhang and Y. Liu, Phys. Chem. Chem. Phys., 2017, 19, 27664–27669.
- [2] P. Qin, Z.-H. Ge and J. Feng, J. Alloys Compd., 2017, 696,782–787.
- [3] Z. H. Ge, X. Liu, D. Feng, J. Lin and J. He, Adv. Energy Mater., 2016, 6, 1600607.