The OH⁻-Driven Synthesis of Pt-Ni Nanocatalysts with Atomic Segregation for Alkaline Hydrogen Evolution Reaction

Cong Zhang,^a Biaohua Chen,^b Xin Liang^{ac*}

a. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China.

b. Beijing University of Technology, Beijing, 100124 China.

c. Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing, 100029 China.

*Corresponding author. Email: <u>liangxin@mail.buct.edu.cn</u>

Supporting Information

Section S1 Nernst Equation:

1. Pt-Ni Alloy

 $Ni^{2+} + 2e^{-} \Leftrightarrow Ni$ (1)

$$E = E^{\theta} - \frac{RT}{nF} Ln \frac{[Ni]}{[Ni^{2+}]}$$
(2)

$$E^{\theta}(Ni^{2+}/Ni = -0.257 V)$$

 E_{Ni} = -0.263 V

2. Pt-Ni Hetero

$$Ni(OH)_2 \Leftrightarrow Ni^{2+} + 2OH^-$$
 (3)

$$K_{sp} = [Ni^{2+}] \cdot [OH^{-}]^2 = 5.47 \times 10^{-16}$$

$$Ni^{2+} + 2e^{-} \Leftrightarrow Ni$$
 (4)

$$E = E^{\theta} - \frac{RT}{nF} Ln \frac{[Ni]}{[Ni^{2+}]}$$
(5)

$$E^{\theta}(Ni^{2+}/Ni = -0.257 V)$$

$$E_{Ni} = -0.587 V$$

Section S2

Figure S1 Magnification of the XRD patterns of Pt-Ni alloy and Pt-Ni hetero catalysts.

Figure S2 Aberration-Corrected-HAADF-STEM images of the Pt-Ni heterostructure.

Figure S3 The side view images of the models.

Figure S4 TEM patterns of (a) acid-Pt-Ni alloy and (b) acid-Pt-Ni hetero. (c) XRD patterns of Pt-Ni alloy, Pt-Ni hetero, acid-Pt-Ni alloy and acid-Pt-Ni hetero catalysts, respectively.

Figure S5. The structure of Ni segregated Pt-Ni after HER. (a) HRTEM image, (b) the corresponding FFT image, (c) HADDF-STEM image of the single crystal, (d) EDS-mapping of Pt species, (e) EDS-mapping of Ni species and (f) EDS-mapping of Ni and Pt species. The lattice fringes of Pt-Ni hetero are 0.183 nm, 0.217 nm and 0.203 nm, which are respectively consistent with the {200} and {111} plane of Pt-Ni, and {111} plane of Ni.

	ZPE (eV)	TS (eV)
H ₂ O	0.56	0.67
H ₂	0.27	0.41
Pt	0	0
Ni	0	0
Alloy	0	0
H*	0.17	0.08
OH*	0.30	0.08
(HO-H)*	0.55	0.21

Table S1. Thermodynamic data used in the free energy of formation calculations.

Table S2. Summary of the atomic ratios for Pt-Ni alloy and Pt-Ni hetero from XPS results.

Sample	Pt/Ni	Pt ²⁺ /Pt	Ni ²⁺ /Ni
Pt-Ni alloy	0.58/0.42	0.77/0.23	0.56/0.44
Pt-Ni hetero	0.41/0.59	0.77/0.23	0.81/0.19

Catalyst	Electrolyte	η	ECSA	Ref.
		(mV vs. RHE)	(m^2/g_{Pt})	
PtNi	0.1M	$\sim 90 (10 \text{ mA cm}^{-2})$	None	Science, 2014 ¹
frames/Ni(OH) ₂	КОН			
Pt NWs/SL-	0.1M	57.8 (4 mA cm ⁻²)	22.8	Nat. Commun.,
Ni(OH) ₂	КОН			2015 ²
Pt/C/20wt% SL	0.1M	121 (5 mA cm ⁻²)	None	ACS catal.,
Ni(OH) ₂	LiOH			2015 ³
Co(OH) ₂ @PdNi	1M	90 (10 mA cm ⁻²)	None	Adv. Mater.,
HNSs/NF	NaOH			20154
Pt-Ni/C	0.1M	$\sim 70 (10 \text{ mA cm}^{-2})$	23	J. Mater. Chem.
	КОН			A, 2016 ⁵
				ACS Appl.
PtCuNi/CNF@CF	1M	$150 (5 \text{ mA cm}^{-2})$	35.8	Mater.
	КОН			Interfaces,
				20166
PtNi	0.1 M	$29 (5 \text{ mA cm}^{-2})$	23	Nanoscale,
Nanohexapod	КОН			20167
Pt ₃ Ni ₃ NWs/C-air	0.1M	$\sim 70 (5 \text{mA cm}^{-2})$	None	Angew. Chem.
	КОН			Int. Ed., 2016 ⁸
Ni ₃ N/Pt	1 M	50 (10 mA cm ⁻²)	None	Adv. Energy
	КОН			Mater., 2017 ⁹
Hcp-excavated				
Pt-Ni nano-	0.1M	65 (10 mA cm ⁻²)	None	Nat. Commun.,
multipods	КОН			201710
Er-WS ₂ -Pt	1 M	$\sim 50 (10 \text{ mA cm}^{-2})$	None	Adv. Mater.,
	КОН			201711
				ACS Appl.
3D PdNN	1 M	$110 (10 \text{ mA cm}^{-2})$	85.6	Mater.
	КОН			Interfaces,
				201712
NiEt-OAm ₆	1M	180 (10 mA cm ⁻²)	None	Electrochim.
	NaOH			Acta, 2017 ¹³
PtNi/CNFs	1 M	$82 (10 \text{ mA cm}^{-2})$	None	J. Mater. Sci.,
	КОН			2017 ¹⁴
PtCoNi FNs	0.5 M	54 (10 mA cm ⁻²)	~28	Int. J. Hydrogen
	КОН			Energy, 2017 ¹⁵
PtNi NCs	0.5 M	$160 (10 \text{ mA cm}^{-2})$	~32	Int. J. Hydrogen
	KOH			Energy, 2017 ¹⁵
Pt-Co(OH) ₂ /CC	1 M	$32 (10 \text{ mA cm}^{-2})$	None	ACS catal.,
	KOH			2017 ¹⁶
Pd-Pt-S	1 M	71 (10 mA cm ⁻²)	None	ACS Appl.

Table S3. The alkaline HER activities of this work and some representative Pt-based materials recently reported.

	КОН			Mater.
				Interfaces,
				201717
Pt/Fe-NF	0.05 M	$\sim 65 (10 \text{ mA cm}^{-2})$	None	Int. J. Hydrogen
	КОН			Energy, 2017 ¹⁸
Au ₃₃ Pt ₆₇ NPs	0.1 M	88 (10 mA cm ⁻²)	None	Electrochim.
	КОН			Acta, 2018 ¹⁹
20 % Pt-C	0.1 M	$61 (10 \text{mA cm}^{-2})$	12.9	This work
	КОН			
Pt-Ni alloy	0.1 M	82 (10mA cm ⁻²)	10.5	This work
	КОН			
Pt-Ni hetero	0.1M	48 (10mA cm ⁻²)	3.9	This work
	KOH			

References

- C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang and V. R. Stamenkovic, *Science*, 2014, 343, 1339-1343.
- H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao and Z. Tang, *Nat. Commun.*, 2015, 6, 6430.
- L. Wang, C. Lin, D. Huang, J. Chen, L. Jiang, M. Wang, L. Chi, L. Shi and J. Jin, ACS Catal., 2015, 5, 3801-3806.
- 4. J. X. Feng, L. X. Ding, S. H. Ye, X. J. He, H. Xu, Y. X. Tong and G. R. Li, *Adv. Mater.*, 2015, **27**, 7051-7057.
- R. Kavian, S.-I. Choi, J. Park, T. Liu, H.-C. Peng, N. Lu, J. Wang, M. J. Kim, Y. Xia and S. W. Lee, *J. Mater. Chem. A*, 2016, 4, 12392-12397.
- 6. Y. Shen, A. C. Lua, J. Xi and X. Qiu, ACS Appl. Mater. Interfaces, 2016, 8, 3464-3472.
- A. Oh, Y. J. Sa, H. Hwang, H. Baik, J. Kim, B. Kim, S. H. Joo and K. Lee, *Nanoscale*, 2016, 8, 16379-16386.
- P. Wang, K. Jiang, G. Wang, J. Yao and X. Huang, Angew. Chem. Int. Ed., 2016, 55, 12859-12863.
- 9. Y. Wang, L. Chen, X. Yu, Y. Wang and G. Zheng, Adv. Energy Mater., 2017, 7, 672-677...
- Z. Cao, Q. Chen, J. Zhang, H. Li, Y. Jiang, S. Shen, G. Fu, B. A. Lu, Z. Xie and L. Zheng, *Nat. Commun.*, 2017, 8, 15131.
- 11. K. Tang, X. Wang, Q. Li and C. Yan, Adv. Mater., 2018, 30, 1870047.
- 12. H. Begum, M. S. Ahmed and S. Jeon, ACS Appl. Mater. Interfaces, 2017, 9, 39303-39311.
- 13. S. A. Abbas, M. I. Iqbal, S. H. Kim and K. D. Jung, *Electrochim. Acta*, 2017, 227, 382-390.
- 14. J. Chen, J. Wang, J. Chen and L. Wang, J. Mater. Sci., 2017, 52, 13064-13077.
- 15. M. T. Liu, L. X. Chen, A. J. Wang, K. M. Fang and J. J. Feng, *Int. J. Hydrogen Energy*, 2017, **42**, 25277-25284.
- 16. Z. Xing, C. Han, D. Wang, Q. Li and X. Yang, ACS Catal, 2017, 7, 7131-7135.
- J. Fan, K. Qi, L. Zhang, H. Zhang, S. Yu and X. Cui, ACS Appl. Mater. Interfaces, 2017, 9, 18008-18014.

- 18. S. Lu and Z. Zhuang, *J Am Chem Soc*, 2017, **139**, 5156-5163.
- 19. W. Wu, Z. Tang, K. Wang, Z. Liu, L. Li and S. Chen, *Electrochim. Acta*, 2018, **260**, 168-176.