Electronic Supplementary Information

Fe/P Dual Doping Boosts the Activity and Durability of CoS₂ Polycrystalline

Nanowires for Hydrogen Evolution

*Yang-Yang Zhang,a,b Xing Zhang,*b,c Ze-Yuan Wu,b,c Bin-Bin Zhang,a,b Yun Zhang,b*

Wen-Jie Jiang,^b *Yu-Guo Yang*,^a *Qing-Hua Kong*,^{*a} and *Jin-Song Hu*,^{*b,c}

- a. School of Science, Beijing Jiaotong University, Beijing 100044, China.
- b. Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecule Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- c. University of Chinese Academy of Sciences, Beijing 100049, China.

*E-mail: zhangxing@iccas.ac.cn; qhkong@bjtu.edu.cn; hujs@iccas.ac.cn

This file includes Fig. S1-S8 and Table S1-S3.

Experimental Method

Preparation of Fe-CoS₂ PCNW. Carbon cloth (CC, Wuhan Instrument, Wuhan) was carefully cleaned with concentrated $HNO₃$ to remove impurities on surface, then rinsed by deionized water and ethanol before use. 1.5 mmol cobalt nitrate hexahydrate (Acros Organics 99+%), 0.15 mmol ferric chloride (Alfa Aesar 98+%), 3.78 mmol ammonium fluoride (Alfa Aesar 98.0%), and 7.5 mmol urea (Acros Organics 99%) were dissolved in 40 mL deionized water. After stirring for 30 min, the solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave with a piece of clean CC and maintained at 120 °C for 6 h. After the autoclave cooled down to room temperature, the sample was collected and washed with water and ethanol several times and dried at 60 °C, followed by annealing at 300 °C for 2 h in air to obtain the Fe-Co₃O₄/CC precursor. To convert Fe-Co₃O₄ into Fe-Co₃₂, Fe-Co₃O₄/CC in a quartz boat was loaded in a quartz tube which was positioned at the downstream of a two-zone furnace. Sulfur powder (0.5 g) in another quartz boat was then positioned in the tube at the upstream of the furnace. The temperature for downstream zone was set at 400 °C with a ramp rate of 3 °C·min⁻¹, while upstream zone was set at 400 °C with a ramp rate of 3 °C·min⁻¹. After 2 h under Ar (100 sccm) atmosphere, the Fe-CoS₂/CC was obtained.

Preparation of Fe/P-CoS₂ PCNW. The prepared Fe-CoS₂/CC was then thermally phosphorized to prepare Fe/P -CoS₂/CC through a vapor phase phosphorization process in a tube furnace. The NaH₂PO₂·H₂O (Alfa Aesar $97+%$) was put in the upstream side of the furnace and heated to 400 °C for 1 h under a steady Ar gas flow with a flow rate of 100 sccm.

Preparation of control catalyst CoS₂ PCNW. CoS₂/CC was prepared in parallel by the same method as $Fe-CoS_2/CC$ except for no addition of ferric chloride.

Preparation of control catalyst P-CoS₂ PCNW. P-CoS₂/CC was prepared through the

same process as Fe/P -CoS₂ except for using CoS₂/CC as precursor instead of Fe- $CoS₂/CC.$

Material characterization.

Morphology characterization was conducted using a Hitachi S-4800 field emission scanning electron microscope (FESEM) operated at 10 kV. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) images were recorded on a JEOL-2100F microscope operating at 200 kV. Elemental mapping was performed with an EDS detector equipped on the JEOL-2100F TEM. X-ray diffraction (XRD) experiments were carried out on a PANalytical high resolution X- ray diffraction system (model EMPYREAN) with a Cu K α radiation (λ = 0.15406 nm). X-ray photoelectron spectroscopy (XPS) was recorded on a Thermo Scientific ESCALab250Xi using 300 W monochromated Mg Kα radiation. The binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon. The Raman spectra were recorded on a LabRAM HR Evolution spectroscope (HORIBA, France).

Electrochemical measurement.

All electrochemical measurements were performed on a CHI 660E bipotentiostat in a standard three-electrode setup. In a typical measurement, Fe/P co-doped $CoS₂/CC$ hybrid electrode (0.5×0.5 cm) was used as a working electrode, a graphite rod as the counter electrode, and a mercuric oxide electrode (MOE) as the reference electrode in 0.5 M H2SO4. The loading of catalyst loading on the electrode is 14.5, 15.7, 14.3, 14.1 mg cm^2 for CoS_2 , Fe-CoS₂, P-CoS₂ and Fe/P-CoS₂, respectively and commercial Pt/C catalyst (20 wt.% Pt, Johnson Matthey) with a loading of 0.35 mg $cm²$ were also measured for comparison. The electrochemical analysis was performed through linear sweep voltammograms at a scan rate of 5 mV s⁻¹. Cyclic voltammetry (CV) measurements were applied to probe the electrochemical double layer capacitance at non-Faradaic region for estimating the effective electrochemical surface area (ECSA).

Calculation of active sites. The voltammetric charges (cathodic and anodic) of active components can be obtained from the CV curves recorded between 0.16 V and 0.23 V *vs.* RHE in 0.5 M H₂SO₄ at a scan rate of 90 mV s⁻¹. The number of active sites (n) of the catalysts was got at non-Faradaic region according the following equation: $1-3$

$$
n=\,\frac{Q}{2F}
$$

- F: Faraday constant (96485 C/mol)
- Q: Whole charge of CV curve (C)

Assessment of turnover frequency (TOF). When the number of active sites is obtained, the per-site turnover frequencies (in s^{-1}) were calculated with the following equation:1-3

 $TOF = \frac{I}{2Fn}$

I: Current during the linear sweep measurement (A) at a given overpotential

n: Number of active sites (mol)

References:

1 Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee and X. Wang, *Nanoscale*, 2013, **5**, 7768-7771.

- 2 J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu and P. Xi, *Nanoscale*, 2016, **8**, 1390-1400.
- 3 J. Zhang, W. Xiao, P. Xi, S. Xi, Y. Du, D. Gao and J. Ding, *ACS Energy Lett.*, 2017, **2**, 1022-1028.

Fig. S1 (a) XRD patterns of CoS₂, Fe-CoS₂, and P-CoS₂ PCNWs. Low-magnification SEM images of (b) CoS₂, (c) Fe-CoS₂, and (d) P-CoS₂ PCNWs.

Fig. S2 TEM and HRTEM images of (a, b) CoS₂, (c, d) Fe-CoS₂, and (e, f) P-CoS₂.

Fig. S3 CV curves measured at different scan rates from 10, 30, 50, 70 to 90 mV s^{-1} in 0.5 M H₂SO₄ for (a) CoS₂, (b) P-CoS₂, (c) Fe-CoS₂, and (d) Fe/P-CoS₂.

Fig. S4 CV curves measured between 0.16 V and 0.23 V (*vs.* RHE) in 0.5 M H2SO4 at a scan rate of 90 mV s^{-1} for CoS_2 , P-CoS₂, Fe-CoS₂, and Fe/P-CoS₂.

Fig. S5 SEM images for (a) $\cos 2$, (b) Fe-CoS₂, and (c) P-CoS₂ after stability test.

Fig. S6 (a) TEM and (b) HRTEM images for Fe/P-CoS₂ after consecutive hydrogen evolution for 10 h at a current density of 25 mA $cm⁻²$. Inset in (a) is a corresponding SAED pattern.

Fig. S7 LSV curves recorded with iR correction for CoS2, Fe-CoS2, P-CoS2 and Fe/P-CoS2 before and after 2000 cycles of CV scanning between 0 and -300 mV (*vs.* RHE).

Fig. S8 SEM images of (a) CoS2, (b) Fe-CoS2, (c) P-CoS2, and (d) Fe/P-CoS2 after 2000 CV scans.

Catalysts	Co (at.%)	S (at.%)	P (at. %)	Fe $(at.^{\%})$
CoS ₂	20.5	79.5		-
$P-CoS2$	21.7	49.2	29.1	-
$Fe-CoS2$	20.7	77.3		2.0
$Fe/P-CoS2$	21.5	52.9	23.6	2.0

Table S1. Elemental contents of different catalysts calculated from XPS spectra.

Table S2. Comparison of HER activity of different catalysts.

Catalysts	Overpotential $(mV at 10 mA cm-2)$	Tafel slope $(mV dec-1)$	TOF $(s^{-1}$ at -0.12 V)
CoS ₂	137	90	0.17
$P-CoS2$	104	57	0.55
$Fe-CoS2$	118	73	0.17
$Fe/P-CoS2$	80	56	1.03

Table S3. EIS results of different catalysts.

Electrocatalysts	Overpotential (mV) at 10 mA $cm-2$	Tafel slop $(mV \text{ dec}^{-1})$	Electrolyte	Ref.
$Fe/P-CoS2$	80	56	$0.5 M H_2SO_4$	This work
CoS ₂ NW	145	51.6	$0.5 M H_2SO_4$	J. Am. Chem. Soc., 2014, 136, 10053
$CoS2/RGO-CNT$	142	82	$0.5 M H_2SO_4$	Angew. Chem. Int. Ed., 2014, 53, 12594
CoS ₂ (a)MoS ₂ /RG O	98	37.4	$0.5 M H_2SO_4$	Adv. Funct. Mater., 2017, 1602699
Ni-doped CoS2	156	52	$0.5 M H_2SO4$	Electrochim. Acta, 2017, 228, 428-435
$CoS_2@WS_2/CC$	97.2	66	$0.5 M H_2SO_4$	J. Mater. Chem. A, 2017, 5, 15552
CoS ₂ /CoSe ₂	80	33.6	$0.5 M H_2SO4$	J. Mater. Chem. A, 2017, 5, 2504
CoS ₂ NA/Ti	140	107	1.0 M KOH $+0.3$ M urea	Electrochim. Acta,
CNF@CoS ₂	110	66.8	$0.5 M H_2SO4$	2017, 246, 776 Inorg. Chem. Front., 2016, 3, 1280
$Co_{1-x}V_{x}SP$	55	50	$0.5 M H_2SO_4$	Adv. Energy Mater., 2018, 1702139
N-doped CoS2	57	48	$0.5 M H_2SO4$	ACS Energy Lett., 2017, 2, 1022
Ni-doped CoS2 nanoneedle	350 mV at 30 mA cm^{-2}	76	1 M KOH	Catalysts, 2017, 7, 366
CoS P/CNT	48	55	$0.5 M H_2SO_4$	Nat. Commun., 2016, 7, 10771
$CoS2-CFN$	136	73	$0.5 M H_2SO_4$	Catal. Sci. Technol., 2016, 6, 4545-
CoS ₂ nanopyramid array	70	64.5	$0.5 M H_2SO4$	J. Mater. Chem. A, 2015, 3, 6306
P-doped CoS2	67	50	0.5 M $\rm H_2SO_4$	Chem. Commun., 2015, 51, 14160
$Fe_{0.54}Co_{0.46}S_{0.92}/C$ NTs/CC	70	64	1 M KOH	ACS Energy Lett., 2017, 2, 2778
$CoS_{2x}Se_{2(1-x)}$	129.5	44	$0.5 M H_2SO_4$	Nanoscale, 2016, 8, 4699

Table S4. HER activity comparison of CoS₂ based catalysts.