Electronic supplementary information

A Novel Dried Plum-Like Yolk-Shell Architecture of Tin Oxide Nanodots Embedded into Carbon Matrix: Ultra-Fast Assembly and Superior Lithium Storage Property

Jin Leng,^a Zhixing Wang,^a Xinhai Li,^a Huajun Guo,^a Guochun Yan,^a Qiyang Hu,^a Wenjie Peng,^a Jiexi Wang^{*,a,b}

^a School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, P. R. China.

^b State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China.

* Corresponding author, email: <u>wangjiexikeen@csu.edu.cn</u>

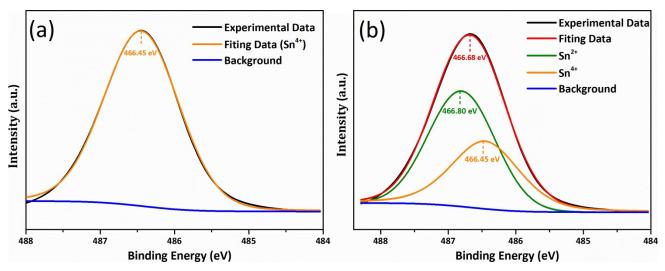


Figure S1. Sn $3d_{5/2}$ XPS spectrums of the pure SnO₂ particles (a) and SnO_x-C composite (b).

As shown in Figure S1, no characteristic peak of Sn^{2+} is observed in the XPS spectrum of the pure SnO_2 particles prepared by SP. However, the XPS spectrum of the YS- SnO_x/C composite revealed a mixed crystal structure. The mole ratio of SnO and SnO_2 in the YS- SnO_x/C composite evaluated by XPS spectrum was about 59/41. The amorphous carbon formed by the carbonization of PVP resulted in a reducing atmosphere around the SnO₂ particle during the high-temperature SP process, and the SnO phase is generated from the partial reduction of SnO₂.

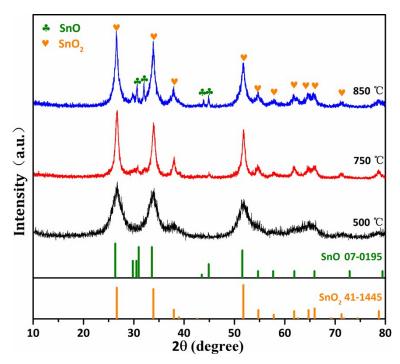


Figure S2. XRD patterns of the samples prepared by SP at different temperature.

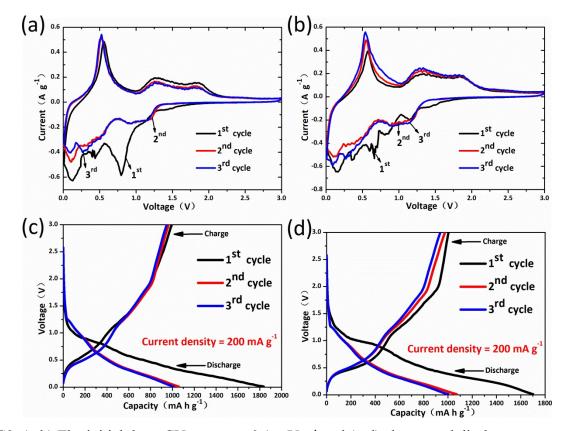


Figure S3. (a-b) The initial three CV curves at 0.1 mV s⁻¹ and (c-d) charge and discharge curves. (a, c) P-SnO₂; (b, d) D-SnO₂.