Electronic Supplementary Information (ESI)

Electrically bioactive coating on Ti with bi-layered SnO₂-TiO₂ hetero-structure for

improving osteointegration

Rui Zhou ^{a,e}, Yong Han ^{a,*}, Jianyun Cao ^b, Ming Li ^c, Guorui Jin ^d, Haoteng Luo ^a, Lizhai Zhang ^a, Bo Su ^{e,*}

a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an

710049, China

b School of Materials, University of Manchester, Manchester M13 9PL, UK

c Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, P.R. China

d Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049,

P.R. China

e Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK

Corresponding Author

- * Yong Han. E-mail: yonghan@xjtu.edu.cn
- * Bo Su. E-mail: b.su@bristol.ac.uk

Fig. S1 Image of implants placed tibia during animal surgery.

Fig. S2 Schematic diagram for the histological morphometry of the histological images with fluorescence labeling: (a) Ti implant, (b) MAO-TiO₂, and (c) SnO₂-TiO₂.

Fig. S3 Surface elemental concentration of the MAO coated samples.

Fig. S4 Surface elemental concentration of the SnO_2 -Non and SnO_2 -TiO₂.

Fig.S5 The CAs of SnO_2 -Ti O_2 surface with different soaking time during the hydrothermal treatment.

Sample code	Phase composition	Treatment
MAO-Non	Amorphous TiO _x	MAO at 250 V
MAO-Anatase	Anatase	MAO at 350 V
MAO-TiO ₂	TiO ₂ (Anatase+Rutile)	MAO at 450 V
SnO ₂ -Non	SnO ₂ +Amorphous TiO _x	MAO at 250 V + Hydrothermal treatment
SnO ₂ -Anatase	SnO ₂ +Anatase	MAO at 350 V + Hydrothermal treatment
SnO ₂ -TiO ₂	SnO ₂ +TiO ₂	MAO at 450 V + Hydrothermal treatment

 Table S1. Sample code based on phase composition from XRD results.

Strategy	Preparation method	Mechanical testing method	Control groups	Healing time	Enhancement	Ref.
Nano-topographic stimulation	Acid etch	Push-out force	Ti	12 weeks	2 times	52
Nano-topographic & Chemical stimulation	Anodizing & Drug laden	Push-shear bond strength	Ti-32Nb- 5Zr	4 weeks	7 times	53
Micro- topographic & Chemical stimulation	Microarc oxidation & HA deposition	Pull-out tests	Microarc oxidized Ti	4 weeks	2 times	54
Modulus matching	Low modulus alloy	Push-in test	Ti	4 weeks	0.9 times	55
Nano-topographic & Chemical stimulation	Anodizing & ions doping	Pull-out test	Ti	12 weeks	4 times	56
Electric & Nano- topographic stimulation	Microarc oxidation & Hydrothermal treatment	Push-out force	Ti Microarc oxidized Ti	4 weeks	7 times 2.5 times	This study

Table S2. Comparison of enhancement in push out test of the implant fabricated by different modified strategies.