Electronic Supporting Information

Biodegradable nanoparticles based on an amine terminated polyester as a strategy to tune surface properties, protein interaction and accumulation in lung metastasis

Diletta Esposito, ^{a†} Claudia Conte, ^{a†} Giovanni Dal Poggetto, ^{b†} Annapina Russo, ^c Antonio Barbieri, ^d Francesca Ungaro, ^a Claudio Arra, ^d Giulia Russo, ^c Paola Laurienzo, ^b Fabiana Quaglia^{*a}

- *a.* Drug Delivery Laboratory, Department of Pharmacy, University of Naples Federico II, Naples, Italy.
- ^{b.} Institute for Polymers, Composites and Biomaterials, CNR, Pozzuoli (Naples), Italy.
- ^{c.} Laboratory of Biochemistry, Department of Pharmacy, University of Naples Federico II, Naples, Italy.
- ^{d.} Animal Facility, National Cancer Institute Foundation "G. Pascale", Naples, Italy

† These authors contributed equally; ***corresponding author.

Table of Contents

Scheme S1. Synthetic strategy for PCL–NH ₂	. 1
Figure S1. FTIR spectra of PCL-N $_3$ (a) and PCL-NH $_2$ (b)	. 1
Figure S2. ¹ H NMR spectrum of PCL-NH ₂ (solvent: CDCl ₃)	. 2
Figure S3. Distribution curves of nanoparticles in water and PBS pH 7.4	.2
Figure S4. Distribution curves of nanoparticles in human plasma	3
Figure S5. Nanoparticles stability in DMEM+FBS and uptake in A549 cells.	. 3
Table S1. Properties of Did-Oil loaded nanoparticles	.4

Scheme S1. Synthetic strategy for PCL–NH₂.

Figure S1. FTIR spectra of PCL-N₃(a) and PCL-NH₂(b)

Figure S2. ¹H NMR spectrum of PCL-NH₂ (solvent: CDCl₃)

Figure S3. Distribution curves of PEG-NPs (A), NH₂/PEG-NPs (B), NH₂-NPs (C), NH₂/PEG-NPs@HA (D) and NH₂-NPs@HA (E) in water and in PBS pH 7.4 after 30 minutes of incubation at $37 \degree$ C.

Figure S4. Distribution curves of PEG-NPs (A), NH₂/PEG-NPs (B), NH₂-NPs (C), NH₂/PEG-NPs@HA (D) and NH₂-NPs@HA (E) in human plasma along time.

Figure S5. NPs properties in DMEM+FBS. A) Zeta potential (ζ); B) mean diameter (D_H); C) uptake of DiD-Oil loaded NPs in A549 cells after 4 h ([NPs]= 0.5 mg/mL). Results are the mean of three measurements obtained on three different NP batches.

Formulation code	Size (nm ± SD)	PI	ζ (mV ± SD)	Actual load mg Did-Oil/100 mg NPs	Encaps. Eff (%)
Did-Oil/PEG-NPs	119±8	0.2	-8±4	0.19	95
Did-Oil/NH ₂ /PEG-NPs ^a	121±12	0.2	$+8\pm3$	0.19	95
Did-Oil/NH ₂ /PEG-NPs@HA	124±11	0.1	-12±4	0.20	98

Table S1. Properties of Did-Oil loaded nanoparticles

^aNH₂-PCL/mPEG-PCL ratio was 1:1 by weight