SUPPORTING INFORMATION

Improved Photodynamic Effect through Encapsulation of Two Photosensitizers in Lipid Nanocapsules

Alexandre Barras,^{†1*} Nadia Skandrani,^{†1,2} Mariano Gonzalez Pisfil,³ Solomiya Paryzhak,⁴ Tetiana

Dumych,⁴ Aurélien Haustrate,⁵ Laurent Héliot,³ Tijani Gharbi,^{2,6} Hatem Boulahdour,^{2,6} V'yacheslav

Lehen'kyi,⁵ Rostyslav Bilyy,⁴ Sabine Szunerits,¹ Gabriel Bidaux,³ and Rabah Boukherroub,^{1*}

¹Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille,

France

²Laboratoire de Nanomédecine, Imagerie et Thérapeutique, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France

³Laboratoire de Physique des Lasers, Atomes and Molécules, Equipe Biophotonique Cellulaire Fonctionnelle, Parc scientifique de la Haute Borne, Villeneuve d'Ascq, France ⁴Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine

⁵Univ. Lille, Inserm, U1003 – PHYCEL – Physiologie Cellulaire, LABEX ICST, F-59000 Lille, France ⁶CHRU Jean Minjoz, 3 Bd Alexandre Fleming, 25030 Besançon, France

*To whom correspondence should be addressed: <u>alexandre.barras@univ-lille1.fr</u>; <u>rabah.boukherroub@univ-lille1.fr</u>; Tel: +333 62 53 17 24; Fax: +333 62 53 17 01. †These authors contributed equally to this work.

Preparation and physical characterization of PS-loaded LNC25

Figure S1: Mean diameter of LNC25 in different media after 1 h incubation.

Figure S2. Absorption spectra (300 - 700 nm) of Hy dissolved in DMSO (*dotted line*) and Hy-loaded LNC25 (*continuous line*) in water both at 10 μM (A); PpIX dissolved in DMSO (*dotted line*) and PpIX-loaded LNC25 (*continuous line*) in water both at 10 μM (B).

Fluorescence properties of PS-loaded LNC25

Figure S3. Fluorescence emission spectra (550-750 nm) of Hy dissolved in DMSO (*dotted line*) and Hy-loaded LNC25 (*continuous line*) in water both at 2.5 μM (A); PpIX dissolved in DMSO (*dotted line*) and PpIX-loaded LNC25 (*continuous line*) in water both at 2.5 μM (B). The emission spectra are recorded using an excitation wavelength λ_{ex}=330 nm (A) and 410 nm (B).

Figure S4: Fluorescence emission spectra (550-750 nm) of Hy-loaded LNC25 (*red line*), PpIX-loaded LNC25 (*blue line*) and PpIX-Hy-loaded LNC25 (*green line*) at 2.5 μ M. The emission spectra are recorded using an excitation wavelength λ_{ex} =330 nm (A) and 410 nm (B).

In vitro phototoxicity

Figure S5: Temperature increase of serum-free DMEM during PDT treatment with visible light (λ >400 nm, 10 mW).

Figure S6: *In vitro* phototoxicity of blank LNC25. MTT assay data for blank LNC25 at different concentrations (incubation time 8 h) in the dark or upon visible light irradiation (12 min at 10 mW) using HeLa **(A)** and MDA-MB-231 **(B)** cell lines.

Figure S7: *In vitro* phototoxicity of free PS. MTT assay data for free hypericin (Hy), free protoporphyrin IX (PpIX) and 50/50 molar ratio of free Hy/PpIX at different concentrations (incubation time 8 h) in the dark or upon visible light irradiation (12 min at 10 mW) using HeLa (A) and MDA-MB-231 (B) cell lines.

Figure S8. DNA flow cytometric analysis. The cells (A) MDA-MB-231 and (B) HeLa are treated with PS-loaded LNC25 at 0.5 μ M and irradiated with visible light (10 mW) for 12 min. After fixation and staining with PI, the cells are analysed by flow cytometry. The percentage of cells in G₀-

G₁, S and G₂-M are calculated using MODFIT computer software and are represented within the histograms. Statistical difference from the

untreated controls: p < 0.05; p < 0.01.

ER + Hy

Mito + Hy

Figure S9. Intracellular localization of hypericin in HeLa cells. Cells were transfected with ER-target Ca²⁺ biosensor, D1ER (left panel), or Mitochondria-targeted Ca²⁺ biosensor, 4mtD3cpv (right panel) for 2 days prior to their treatment with Hy-loaded LNC25 (0.5 μM) for 2 h. Fluorescence imaging (512×512 pixels) was performed with a SP5 LSM (Leica Microsystems). Objective: ×60. Scale bar: 5 μm.

Before PS

After 20min PS

Figure S10. Fragmentation of the mitochondrial network induced by the photo-stimulation of PpIXpreloaded HeLa cells. Cells were transfected with Mitochondria-target Ca²⁺ biosensor, 4mtD3cpv for 2 days prior to their treatment with PpIX-loaded LNC25 for 2 h. Fluorescence imaging (512×512 pixels) was performed with a SP5 LSM (Leica Microsystems). Objective: ×60. Scale bar: 5 µm.

Figure S11. Photo-stimulation of PpIX or Hy induces a massive blebbing of the plasma membrane in Hela cells. After a 2 h incubation with PpIX-loaded LNC25 or Hy-loaded LNC25 (0.5 μM), HeLa cells were photo-irradiated with a Laser (405/488/590 nm wavelengths) for 5 min. FLIM images (256×256 pixels) indicate the localization of photosensitizers in the plasma membrane and the formation of big protrusions in this latter. Objective: ×60. Scale bar: 5 μm.