SUPPORTING INFORMATION

Effective Thermal Transport Highway Construction within Dielectric Polymer Composites via a Vacuum-assisted Infiltration Method

Yuming Wu ^{a,b}, Kai Ye ^c, Zhiduo Liu ^{d,e}, Mengjie Wang ^a, Kuan W. A. Chee ^c, Cheng-Te Lin ^{a*}, Nan Jiang ^{a*} and Jinhong Yu ^{a*}

^a Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China. E-mail: linzhengde@nimte.ac.cn (C.-T. Lin); jiangnan@nimte.ac.cn (N. Jiang); yujinhong@nimte.ac.cn (J.H Yu)

^b Laboratory for Microstructure, Institute of Materials, Shanghai University, Shanghai 200072, China

^c Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China

^d State Key Laboratory of Integrated Optoelectronics, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China ^e University of Chinese Academy of Sciences, Beijing 100049, China

Fig. S1 (a) Photograph of raw PVA foam and (b) SEM images showing the microstructure of the raw foam. (c) Photograph of PVA foam after vacuum-assisted infiltration and before hot pressing and (d) SEM images showing the microstructure of the sample.

Figure S2. TGA curves of PVA and VIM composites

	Al ₂ O ₃ wt%	Al ₂ O ₃ vol%
PVA	0	0
Composite 1	22.4	8.0
Composite 2	33.3	13.1
Composite 3	56.0	27.8
Composite 4	65.7	36.7
Composite 5	73.1	45.4

Table S1 Conversion of mass fraction into volume fraction and calculation method

Calculation method:

Density at standard conditions: $\rho_1 = \rho_{A12O3} = 3.97 \text{ g/cm}^3$ $\rho_2 = \rho_{PVA} = 1.2 \text{ g/cm}^3$

The volume fraction of Al₂O₃ filler is calculated through the equation:

$$\frac{(wt\%)/\rho 1}{\frac{wt\%}{\rho 1} + (1 - wt\%)/\rho 2}$$

Fig. S3 Cross sectional SEM images of VIM composites with different Al_2O_3 content: (a) pure

PVA, (b) 8.0 vol%, (c) 13.1 vol%, (d) 27.8 vol%, (e) 36.7 vol%, (f) 45.4 vol%.

Fig. S4 EDX element mapping images of VIM composite for 45.4 vol% Al₂O₃ filler

Fig. S5 Digital photography of samples prepared for insulation test

For meeting the sample size demand of dielectric breakdown strength and volume resistivity, foam PVA sheet (only hot pressing PVA foam), powder PVA sheet (only hot pressing PVA powder), PMM composite sheet (including 45.4 vol% Al₂O₃) and VIM composite sheet

(including 45.4 vol% Al_2O_3) are prepared through hot pressing and the sizes of all the sheets are 10×10 cm². The reason why the foam PVA is not transparent as the powder PVA is that the dye within raw PVA foam is oxidized during hot pressing.

Fig. S6 Mechanic property of VIM composite sheet with 45.4 vol% Al₂O₃ content

Fig. S7 Dynamic mechanical analysis of PVA and VIM composites

Dynamic mechanical analysis (DMA) measures the cyclic response of a material as a function of the temperature. The storage modulus represents the elastic modulus of plastic

material and its recovery ability. The storage modulus of pure PVA and VIM composites from $-30 \text{ }^{\circ}\text{C}$ to $100 \text{ }^{\circ}\text{C}$ are shown in Figure S6. It is displayed that the addition of Al₂O₃ results in an increase the storage modulus. The storage modulus of 45.4 vol% filler VIM composite is 13.5 GPa at -30 °C, while the value of pure PVA is 4.0 GPa. Therefore, the results indicate that Al₂O₃ filler can improve the stiffness of PVA matrix.