Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Design Two-Dimensional Electron Gas via Polarization Discontinuity from

Large-Scale First-Principles Calculations

Jianli Cheng and Kesong Yang*

Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093-0448, United States

*E-mail: <u>kesong@ucsd.edu</u>. Tel: +1-858-534-2514.

Figure S1. Scheme of perovskite oxide ABO₃ structures: (a) cubic, (b) tetragonal, (c) rhombohedral, and (d) structure with oxygen octahedral rotates along the [111] direction.

Figure S2. Calculated total energy per unit cell of the film as a function of the average polarization for $BaTiO_3/SrTiO_3$ heterostructure (HS) models with different film thickness. The reference energy (zero) is taken from the lowest energy of each system.

Figure S3. Calculated layer-resolved partial DOS for (a) $SrTiO_3/SrSiO_3$ and (b) $BaTiO_3/BaSiO_3$, along with their charge density plots projected on the bands forming the metallic states. The vertical dash line at zero-point energy shows the Fermi level. The solid blue, red, and green color indicates *s*, *p*, and *d* orbital, respectively.

Figure S4. Calculated layer-resolved partial DOS for P_+ and P_- states in BaSnO₃/SrTiO₃ HS, along with their charge density plots projected on the bands forming the metallic states.

Table S1. Calculated electron effective mass m^* (in unit of free electron mass) along the M- Γ and Γ -X path for BaTiO₃/SrTiO₃, CaZrO₃/YbZrO₃, CaZrO₃/CaHfO₃, CaSnO₃/BaSiO₃, BaSiO₃/CaGeO₃, and CaZrO₃/SrSnO₃ HS models.

Systems	<i>m*/m</i> _e		
	М-Г	Г-Х	Average
BaTiO ₃ /SrTiO ₃	0.56	0.46	0.51
CaZrO ₃ /YbZrO ₃	0.40	0.38	0.39
CaZrO ₃ /CaHfO ₃	0.51	0.40	0.46
CaSnO ₃ /BaSiO ₃	0.34	0.31	0.33
BaSiO ₃ /CaGeO ₃	0.30	0.24	0.27
CaZrO ₃ /SrSnO ₃	0.34	0.28	0.31