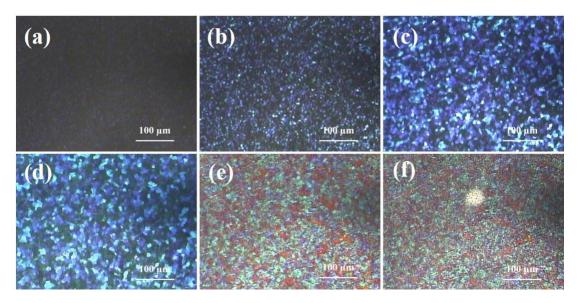
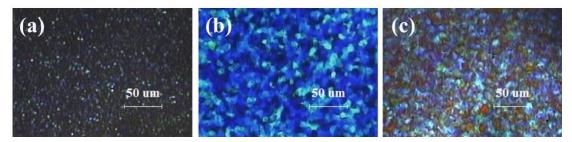
Supporting Information

The temperature range and optical properties of Liquid crystalline blue phase in inverse opal structures

Yuxian Zhang,^{a,b} Weidong Zhao,^{a,b} Yongbo Yu,^{a,b} Zhou Yang,*a,b Wanli He,*a,b Hui Cao,^{a,b} Dong Wang^{a,b}


- a. State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- b. Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China

*Corresponding authors:


E-mail Address: yangz@ustb.edu.cn (Z. Yang), hewanli@mater.ustb.edu.cn (W. He)

2-ЕНА

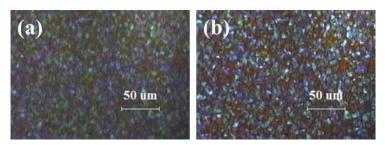

Fig. S1 Chemical structures of the chiral dopant S811, the photoinitiator Irgacure651, the monomer C6M and 2-ethylhexyl acrylate (2-EHA).

Fig S2. POM images of the BP-IOP device with 20 μ m-spacer taken at a cooling rate of 1.0 °C/min (a) 35.5 °C (b) 34.9 °C (c) 34.2 °C (d) 33.9 °C (e) 29.7 °C (f) 24.5 °C

Fig S3. POM textures of PSBP sample at different temperatures before polymerization (a) 21.2 $^{\circ}$ C (b) 18 $^{\circ}$ C (c) 17.6 $^{\circ}$ C

Fig S4. POM textures of PSBP sample at different temperatures after polymerization (a) 25 °C (b) 21.4 °C