Supplementary Information

Controllable Synthesis and Evolution Mechanism of Tungsten Bronze Nanocrystals with Excellent Optical Performance for Energy-Saving Glasses

Xie-Jun Huang,^{ab} Jun Bao,^{ab} Yue Han,^a Chang-Wei Cui,^a Jie-Xin Wang,^{abc} Xiao-Fei Zeng,^{ab*} Jian-Feng Chen^{abc}

^a State Key Laboratory of Organic-Inorganic Composites, ^b Research Center of the Ministry of

Education for High Gravity Engineering and Technology, ^c Beijing Advanced Innovation Center

for Soft Matter Science and Engineering,

Beijing University of Chemical Technology, Beijing 100029, PR China

^{*}Corresponding authors:

Xiao-Fei Zeng, Tel: +86-10-64447274; Fax: +86-10-64423474; E-mail: <u>zengxf@mail.buct.edu.cn</u> (X.F. Zeng)

Cesium and sodium precursors	Concentration (mmol)	Mol ratio to W
Na ₂ SO ₄ / Cs ₂ SO ₄	0.066/ 0.132	0.11/ 0.22
NaCl/ CsCl	0.132/ 0.264	0.11/ 0.22
NaAc/ CsAc	0.132/ 0.264	0.11/ 0.22
NaOH/ CsOH·H ₂ O	0.132/ 0.264	0.11/ 0.22

Table S1. The concentration of cesium and sodium precursors mixed with AMT

Table S2. Compositions of tungsten bronze nanoparticles estimated by an X-rayphotoelectron spectroscopy and the simulated amount of metal doping.

	Atomic ratio				(Na+Cs)/W mol ratio		
Sample	W4f	C1s	O1s	Cs3d	Na1s	Experimental	Simulated
NaCWO-S	4.93	75.59	18.31	0.86	0.31	0.2373	0.239
NaCWO-C	4.68	77.79	16.25	1.1	0.18	0.2735	0.272
NaCWO-A	5.29	76.05	17.2	0.94	0.52	0.2760	0.277
NaCWO-O	5.27	73.43	19.66	1	0.64	0.3112	0.310

Fig. S1 TEM image of NaCWO-S nanocrystals reacting for 20 h.

Fig. S2 XRD of various NaCWO nanocrystals prepared with increased ionic amount (M/W=0.5 mol ratio).

Fig. S3 TEM images of the NaCWO nanocrystals prepared with increased ionic amount (M/W = 0.5, mol ratio) at different ligand environments: (a) SO_4^{2-} ; (b) Cl⁻; (c) Ac⁻; (d) OH⁻.

Fig. S4. Full range XPS spectra of various NaCWO nanocrystals.

Fig. S5. Full range XPS spectra (a) and fitted XPS spectra on W4f core level (b) of

NaCWO-S nanocrystals reacting for 20 h.

Fig. S6. Transmittance spectra of NaCWO-S nanocrystals reacting for 20 h.