Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Supplementary information

$Sn_{1-x}Se$ thin films with low thermal conductivity: role of stoichiometry deviation in thermal transport

Giuk Jeong,^a Yoon Hwan Jaung,^b Je kyung Kim,^a Jae Yong Song,^{*b,} and Byungha Shin^{*1}

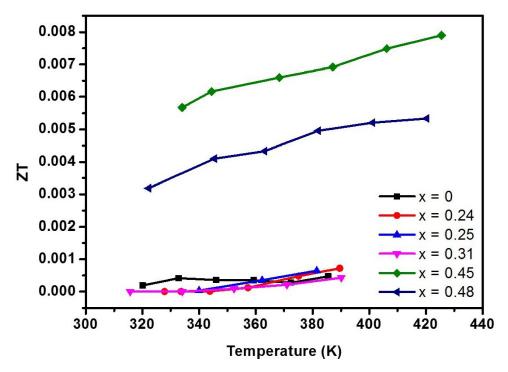


Fig. S1. ZT values of Sn_{1-x}Se thin films

^{*a} Dept. of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea, E-mail: <u>byungha@kaist.ac.kr</u>

^{*&}lt;sup>b</sup>Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea, E-mail: <u>jysong@kriss.re.kr</u>

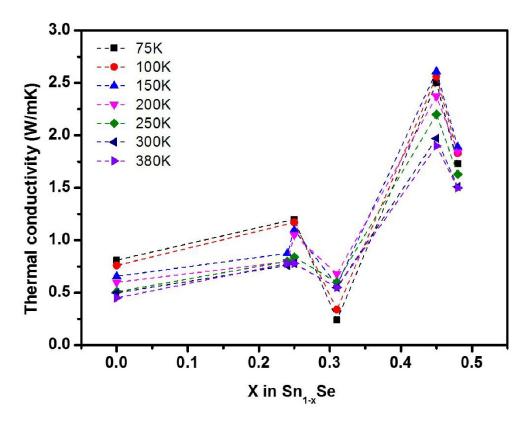
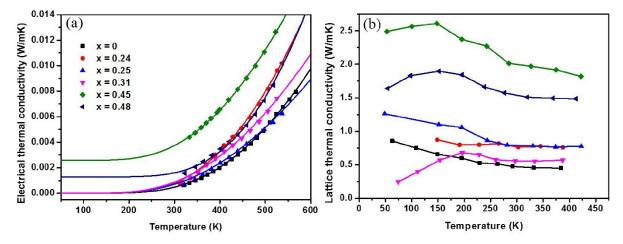



Fig. S2. Composition dependence of thermal conductivity of Sn_{1-x}Se thin films.

Fig. S3. Temperature dependence of thermal conductivity of Sn_{1-x}Se thin films: (a) electrical thermal conductivity, (b) lattice thermal conductivity.

Fig. S4. Temperature dependence of total thermal conductivity of $Sn_{1-x}Se$ thin films with x=0.31. (1) and (2) are from two different flakes lifted from a same thin film.