Dielectric Phase Transition Triggered by the order-disorder Transformation of Cyclopropylamine in a layered Organic-Inorganic Halide Perovskite

Shiguo Han,^{ab} Xitao Liu,^a Jing Zhang,^a Chengmin Ji,^a Zhenyue Wu,^{ab} Kewen Tao,^a Yuyin Wang,^{ab} Zhihua Sun^{*a} and Junhua Luo^{*a}

^a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

*Email - sunzhihua@fjirsm.ac.cn

Figure S1. Experimental and calculated powder X-ray diffraction patterns of CPA at room temperature.

Figure S2. PXRD patterns of CPA recorded after 7/60 days at room temperature.

Figure S3. The TG curves of CPA with heating rate 10 K/min.

Figure S4. Ultraviolet-Vis diffuse reflectance spectrometry for CPA. Inset: Calculated band gap of CPA.

Table S1. Organic-inorganic hybrid phase transition compounds based on various cyclic organicamines.

Cyclic amines	Organic cation	Compound formula	Transformation temperature	Ref.
.		[C5H9NH3][CdCl3]	290 K	[1]
Five-membered ring	N	$[C_3N_2H_5]_5[Sb_2Br_{11}]$	125 K; 145 K; 353 K	[2]
		[C ₃ N ₂ H ₅] ₃ [Sb ₂ I ₉]	292 K; 325 K	[2]
	N N	[C ₃ N ₂ H ₅] ₃ [Bi ₂ I ₉]	275 K; 325 K	[3]
		$[C_3N_2H_5]_5[Bi_2Br_{11}]$	155 K; 355 K	[4]
		[C5H10NH2]2[SbCl5]	338 K	[5]
		$[C_5H_{10}NH_2]_2[SbBr_5]$	365 K	
		[C ₅ H ₁₀ NH ₂] ₂ [BiCl ₅]	342 K	[6]
		[C ₅ H ₁₀ NH ₂] ₂ [BiBr ₅]	362 K	_
Six-membered ring		[C ₆ H ₁₁ NH ₃] ₂ PbBr ₄]	360 K	[7]
	\square	$[C_6H_{13}NH]_2[ZnBr_4]$	345 K	[8]
		$[C_6H_{14}N][FeBr_4]$	340 K	[9]
		[C ₆ H ₁₄ N](18-crown-6)][ClO ₄]	250 K	[10]
Seven-membered		$[C_6H_{11}NH_3]_2[PbBr_3]$	338 K	[11]
		·		

ring	[C6H11NH3]2[SbCl5]	335 K	[12]
Three-membered ring	[C ₃ H ₅ NH ₃] ₂ [CdCl ₄]	273 K	СРА

[1] Y. Zhang, H. Y. Ye, W. Zhang, R. G. Xiong, Inorg. Chem. Front, 2014, 1, 118

- [2] A. Piecha, A. Pietraszko, G. Bator and R. Jakubas, J. Solid. State Chem, 2008, 181, 1155.
- [3] M. Wectawik, A. Gagor, R. Jakubas, A. P. Bisiorek, W. Medycki, J. Baran, P. Zielinski and M. Gatazka, *Inorg. Chem. Front*, 2016, **3**, 1306.
- [4] A. Piecha, A. Bialonska and R. Jakubas, J. Phys Condens Mat, 2008, 20, 325224.
- [5] S. G. Han, J. Zhang, Z. H. Sun, C. M. Ji, W. C. Zhang, Y. Y. Wang, K. W. Tao, B. Teng and J. H. Luo, *Inorg. Chem.* 2017, 56, 13078.
- [6] B. B. Bolek, J. Zaleski, G. Bator, R. Jakubas, J. Phys Chem Solids, 2000, 61, 1249.
- [7] Z. H. Sun, X. T. Liu, T. Khan, C. M. Ji, M. A. Asghar, S. G. Zhao, L. N. Li, M. C. Hong and J. H. Luo, Angew. Chem. Int. Ed. 2016, 55, 6545.
- [8] T. Khan, M. A. Asghar, Z. H. Sun, A. Zeb, L. N. li, S. J. Liu, S. G. Zhao, C. M. Ji and J. H. Luo, *Chem. Asian J.* 2016, **11**, 2876.
- [9] S. G. Han, J. Zhang, B. Teng, C. M. Ji, W. C. Zhang, Z. H. Sun and J. H. Luo, J. Mater. Chem. C, 2017, 5, 8509.
- [10] T. Khan, M. A. Asghar, Z. H. Sun, A. Zeb, C. M. Ji and J. H. Luo, J. Mater. Chem. C, 2017, 5, 2865.
- [11] J. Zhang, X. T. Liu, X. F. Li, S. G. Han, K. W. Tao, Y. Y. Wang, C. M. Ji, Z. H. Sun and J. H. Luo, *Chem. Asian J.* 2018, **13**, 982.
- [12] J. Zhang, S. G. Han, X. T. Liu, Z. Y. Wu, C. M. Ji, Z. H. Sun and J. H. Luo, *Chem. Commun*, 2018, 54, 5614.

Table S2. Cry	ystal data and	structure refinement	for compound CPA.
---------------	----------------	----------------------	-------------------

Empirical formula	$C_6H_{16}N_2CdCI_4$	$C_6H_{16}N_2CdCl_4$	
Temperature	100 K	280 K	
Formula weight	370.41	370.41	
Crystallographic system	monoclinic	orthorhombic	
Space group	P21/c	Стса	
	<i>a</i> = 11.9475(7)	<i>a</i> = 7.5746(7)	

	<i>b</i> = 7.2805(4)	<i>b</i> = 22.852(2)
	<i>c</i> = 7.6597(5)	<i>c</i> = 7.5728(6)
	<i>θ</i> = 108.539(2)	$\alpha = \beta = \gamma = 90.00$
Unit cell dimensions	<i>V</i> = 631.69(7)	<i>V</i> = 1310.8(2)
Z, Calculated density	2, 1.9471 g/cm ³	4, 1.877 g/cm ³
F(000)	364.0	728.0
Theta range for data collection	5.596-55.19º	6.454-55.072⁰
	-15 ≤ h ≤ 14	-9 ≤ h ≤ 9
Limiting indices	-9 ≤ k ≤ 9	-29 ≤ k ≤ 27
	-9 ≤ I ≤ 9	-9 ≤ ≤ 9
Reflections collected / unique	7996/1446 [<i>R_{int}</i> = 0.0457]	3665/808 [<i>R_{int}</i> = 0.0366]
Completeness	98.9%	99.2%
Data / restraints / parameters	1446/0/63	808/36/45
Goodness-of-fit	1.137	1.099
Final R indices [I>2sigma(I)]	$R_1 = 0.0370$	$R_1 = 0.0635$

Table S3. N-H···Cl Hydrogen bonds of CPA at LTP.

D-H…A	d(D-H)	d(H…A)	< DHA	d(DA)
N1-H1A…Cl2 ^{#1}	0.910	2.309	168.68	3.207
N1-H1B…Cl1 ^{#2}	0.910	2.462	146.05	3.256
N1-H1B…Cl2 ^{#3}	0.910	2.757	125.15	3.365
N1-H1C…Cl1	0.910	2.292	176.73	3.201

Symmetry transformations used to generate equivalent atoms:

^{#1}-X+1, Y+1/2, -Z+3/2 ^{#2} X, -Y+1/2, Z-1/2 ^{#3}-X+1, -Y+1, -Z+1

Table S4. N-H…Cl Hydrogen b	oonds of CPA at HTP.
-----------------------------	----------------------

D-H…A	d(D-H)	d(H…A)	< DHA	d(DA)
N1-H1A…Cl1 ^{#1}	0.890	2.470	171.31	3.353
N1-H1B…Cl1 ^{#2}	0.890	2.874	128.17	3.495
N1-H1C…Cl1 ^{#3}	0.890	2.877	127.89	3.495
N1-H1C…Cl2 ^{#4}	0.890	2.568	140.49	3.303

Symmetry transformations used to generate equivalent atoms:

^{#1} X+1/2, Y, -Z+3/2 ^{#2}-X+3/2, -Y+1, Z-1/2 ^{#3}-X+2, -Y+1, -Z+1 ^{#4} X+1/2, Y, -Z+1/2

Table S5. CI-Cd-Cl Bond angles of compound CPA at LTP and HTP.

LTP				
Bond Angle	(°)	Bond Angle	(°)	
Cl(11)-Cd(1)-Cl(1)	180.0	Cl(11)-Cd(1)Cl(2)	92.15	
Cl(1)-Cd(1)-Cl(22)	86.98	Cl(22)-Cd(1)-Cl(21)	91.63	
Cl(1)-Cd(1)-Cl(21)	92.15	Cl(23)-Cd(1)-Cl(21)	88.37	
Cl(11)-Cd(1)-Cl(23)	86.98	Cl(22)-Cd(1)-Cl(2)	88.37	
Cl(11)-Cd(1)-Cl(21)	87.85	Cl(23)-Cd(1)-Cl(22)	180.0	
Cl(1)-Cd(1)-Cl(23)	93.02	Cl(23)-Cd(1)-Cl(2)	91.63	
Cl(1)-Cd(1)-Cl(2)	87.85	Cl(21)-Cd(1)-Cl(2)	180.0	
Cl(11)-Cd(1)-Cl(22)	93.02			
		НТР		
Bond Angle	(°)	Bond Angle	(°)	
Cl(11)-Cd(1)-Cl(12)	90.50	Cl(21)-Cd(1)-Cl(12)	89.85	
Cl(13)-Cd(1)-Cl(1)	90.50	Cl(21)-Cd(1)-Cl(13)	90.15	
Cl(12)-Cd(1)-Cl(1)	89.50	Cl(2)-Cd(1)-Cl(12)	90.15	
Cl(12)-Cd(1)-Cl(13)	180.0	Cl(2)-Cd(1)-Cl(11)	89.85	
Cl(11)-Cd(1)-Cl(1)	180.0	Cl(2)-Cd(1)-Cl(1)	90.15	
Cl(11)-Cd(1)-Cl(13)	89.50	Cl(21)-Cd(1)-Cl(1)	89.85	
Cl(2)-Cd(1)-Cl(13)	89.85	Cl(2)-Cd(1)-Cl(21)	180.0	
Cl(21)-Cd(1)-Cl(11)	90.15			

Table S6. Cd-Cl Bond lengths of compound CPA at LTP and HTP.

	Ľ	ТР	
Bond	(Å)	Bond	(Å)
Cd(1)-Cl(11)	2.5429(14)	Cd(1)-Cl(22)	2.6878(14)
Cd(1)-Cl(1)	2.5429(14)	Cd(1)-Cl(23)	2.6878(14)
Cd(1)-Cl(2)	2.7036(14)	Cl(2)-Cd(14)	2.6878(14)
Cd(1)-Cl(21)	2.7036(14)		
	Н	ТР	
Bond	(Å)	Bond	(Å)
Cd(1)-Cl(1)	2.6899(4)	Cd(1)-Cl(2)	2.491(4)
Cd(1)-Cl(11)	2.6899(4)	Cd(1)-Cl(23)	2.491(4)
Cd(1)-Cl(12)	2.6899(4)	Cl(1)-Cd(14)	2.6899(4)
Cd(1)-Cl(13)	2.6899(4)		