Supporting Information

Growth of SnO₂ nanocrystals co-

doped with Eu³⁺ for highly enhanced photoluminescence in mesoporous silica glasses

1. Synthesis of Eu³⁺ doped SnO₂ powder

Eu³⁺ doped SnO₂ powder was prepared by a simple co-precipitation method.^{1, 2} EuCl₃·6H₂O (99.99%) and SnCl₄·5H₂O (99.995%) were dissolved in deionized water. The original molar ratio of Eu³⁺ to Sn⁴⁺ is 5%. The mixture was stirred for about 1 hour to become homogenous solution. Ammonium hydroxide (NH₃ · H₂O) as the precipitator was added in the solution until the PH reach 8. The final solution was stirred for 3 hours at 80 °C and followed a filtration. The obtained precursor was thoroughly washed, dried at 50 °C and annealed at 1000 °C for 3 hours. Finally, the Eu³⁺ doped SnO₂ powder was formed.

2. Supplementary Tables

Table S1. Dopants Concentration of the synthesized samples with different concentration of Eu³⁺

Complex	dopants (mol/L)	
Samples	EuCl ₃ •6H ₂ O	
Eu 0	0	
Eu 0.05	0.05	
Eu 0.15	0.15	
Eu 0.20	0.20	
Eu 0.25	0.25	
Eu 0.30	0.30	

Table S2. Dopants Concentration of the synthesized samples with different concentration of

SnO₂ NCs

Samples	dopants (mol/L)		
	EuCl ₃ •6H ₂ O	SnCl ₄ •5H ₂ O	
Sn 0	0.20	0	
Sn 0.20	0.20	0.20	
Sn 0.40	0.20	0.40	
Sn 0.60	0.20	0.60	

Table S3. Dopants Concentration of Sn 0.40 single-doped glasses and the sample co-doped with very low Eu³⁺ ions

Samplos	dopants (mol/L)	
Samples -	EuCl ₃ •6H ₂ O	SnCl ₄ •5H ₂ O
Sn 0.40 single-doped	0	0.40
Sn 0.40 Eu 0.0005	0.0005	0.40

3. Supplementary Figures

Fig. S1 XRD patterns of Eu doped SnO₂ powder

Fig. S2 PL spectra of Eu doped SnO₂ powder excited at 325 nm

Fig. S3 The ratio of PL emission intensity at 575 nm and 588 nm (F_{575}/F_{588}) as a function of

 SnO_2 NCs concentration

Fig. S4 PL emission spectra of Sn 0.40 Eu 0.0005 excited by 325 nm

Fig.S5 PL decay curves of Sn 0.40 single-doped and Sn 0.40 Eu 0.0005 at 574 nm of SnO₂

NCs excited by 325 nm

References

- 1. D.-S. Lee, J.-K. Jung, J.-W. Lim, J.-S. Huh and D.-D. Lee, *Sensors and Actuators B: Chemical*, 2001, **77**, 228-236.
- 2. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis and A. Dinia, *The Journal of Physical Chemistry C*, 2007, **111**, 2924-2928.