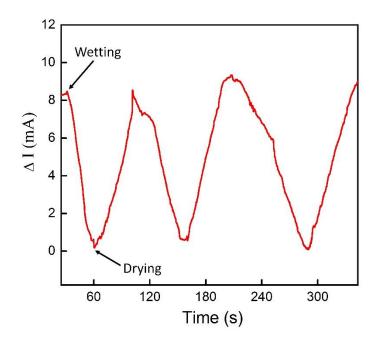

Supporting Information

Environmentally responsive composite films fabricated using silk


nanofibrils and silver nanowires

Jialin Liu,^a Tengyu He,^b Guangqiang Fang,^a Ranran Wang,^b Elbadawy A. Kamoun,^c Jinrong Yao,^a Zhengzhong Shao^a and Xin Chen*^a

- ^aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China. E-mail: chenx@fudan.edu.cn
- ^bState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 Heshuo Road, Shanghai 201899, People's Republic of China.
- ^cPolymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt.

Fig. S1 Conductivity of AgNWs/SNFs hybrid film at different relative humidity (RH) and in wet state. AgNWs content: 9%. 75% RH is achieved by NaCl saturated aqueous solution, 57% RH is achieved by NaBr saturated aqueous solution, and 7% RH is achieved by LiBr saturated aqueous solution, respectively.

Fig. S2 Real-time current change of AgNWs/SNFs hybrid film during three wetting and blow-drying cycles. AgNWs content: 7 wt%.

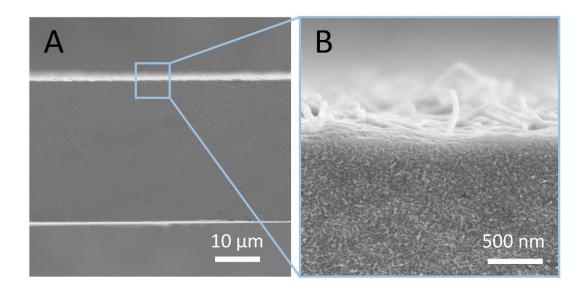


Fig. S3 (A) SEM image and (B) its enlarged portion of the cross-section of AgNWs/ SNFs layered film. AgNWs density: 200 mg m^{-2} .