(Supplementary Information)

Sub-10 nm Monolayer ReS₂ Transistor for Low Power

Applications

Ruge Quhe,^{1,*} Jianxiu Chen,¹ and Jing Lu ^{2,3,*}

¹State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China ²State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China ³Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China

1. Basis sets

The differences of transmission spectra at $L_g = 4$ nm and $V_g = -1.3$ V in zigzag direction between Double-Zeta-Polarized (DZP) and Single-Zeta-Polarized (SZP) are shown in Fig. S1. Our tests shown that the calculated results using SZP and DZP basis set are consistent.

Fig. S1. Transmission spectra of zigzag-directed ReS₂ transistor (at $L_g = 4$ nm and $V_g = -1.3$ V) using SZP and DZP basis sets, respectively.

2. Influences induce by the applied gate in ReS₂

The applied gate in ReS_2 may induce structure distortion in ReS_2 monolayer. We considered this situation and done some experiments to analyze the possible effects. We have compared the results with and without the applied gate on the unit cell level and the device level, respectively.

At the unit cell level, we chosen a high gate voltage of $V_g = -1.1$ V to compare with the case of $V_g = 0$ V. Several important parameters were compared and the results were listed in the Table S1. It is found that the optimized ReS₂ layer with and without gates show quite similar lattice constants (the difference is less than 0.15%). Their type and value of the band gaps are the same.

	Without applied gate	With applied gate
		$(V_{\rm g} = -1.1 {\rm V})$
Lattice constant a (Å)	6.46	6.47
Lattice constant b (Å)	6.56	6.57
Band gap (eV)	1.47	1.47
Type of band gap	direct band gap	direct band gap

Table S1. Material parameters of ReS₂ unit cell with and without a gate.

At the device level, we have compared the performance of the 8 nm gate-length zigzagdirected ReS_2 transistor with and without the consideration of the structural distortion induced by the gate. Their transmission spectra of the same order of magnitude and have transmission gaps of the same size (Fig. S2).

Fig. S2. Transmission spectra of the zigzag-directed ReS₂ transistor (at $L_g = 8$ nm and at $V_g = -1.1$ V) with and without consideration of the structural distortion induced by a gate.

In summary, we prove that the structure distortion of ReS₂ induced by the applied gate is

negligible, and the device performance with and without the consideration of this structural distortion are expected to be similar.

3. van der Waals correction

Van der Waals (vdW) force plays an important role in layered materials. To check the effects of the vdW force, we adopted Grimme DFT-D2 vdW correction method at both the unit cell level and the device level.

At the unit cell level, we compared the key geometric and electronic parameters of ReS_2 with and without considering the vdW correction as shown in Table S2. No apparent difference is found.

	Without vdW correction	With vdW correction
Lattice constant a (Å)	6.46	6.46
Lattice constant b (Å)	6.56	6.56
Band gap (eV)	1.47	1.47
Type of band gap	direct band gap	direct band gap

Table S2. Material parameters of ReS₂ cell with and without van der Waals correction.

At the device level, the comparison of transmission spectra of the zigzag-directed ReS_2 transistor (at $L_g = 8$ nm and at $V_g = -1.1$ V) with and without vdW correction as shown in Figure S3. The transmission spectra are nearly the same with similar magnitudes and transmission gaps.

Fig. S3. Transmission spectra of zigzag-directed ReS₂ transistor (at $L_g = 8$ nm and $V_g = -1.1$ V) with and without vdW correction.

In summary, we proved that the differences taking van der Waals correction into account in ReS₂ are negligible.