Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Highly Efficient Dual Broad Emitting Light Convertor: An Option for Next-Generation Plant Growth LEDs

Mingcai Li, ^a Xuejie Zhang, ^a Haoran Zhang, ^{*a} Weibin Chen, ^a Li Ma, ^b Xiaojun Wang, ^b Yingliang Liu^a and Bingfu Lei^a*

 ^a Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
^b Department of Physics, Georgia Southern University, Statesboro, GA 30460, USA.

*Corresponding authors. E-mail addresses: tleibf@scau.edu.cn (B.F. Lei)

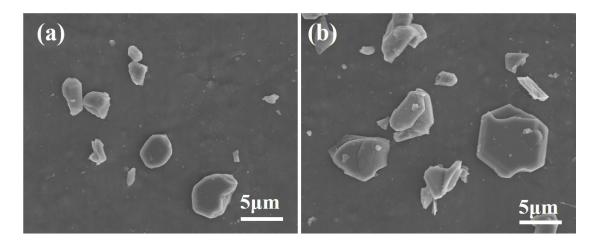


Figure S1. (a) –(b) SEM of BAM phosphor

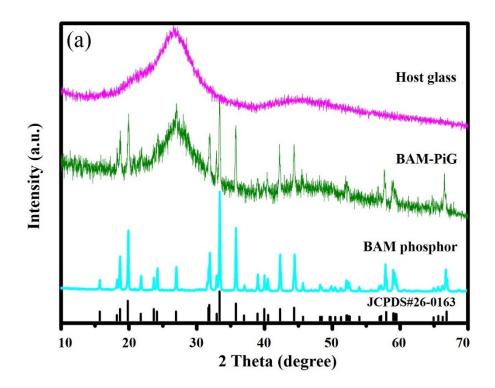


Figure S2. (a) XRD patterns of host glass, BAM-PiG and BAM-Phosphor.

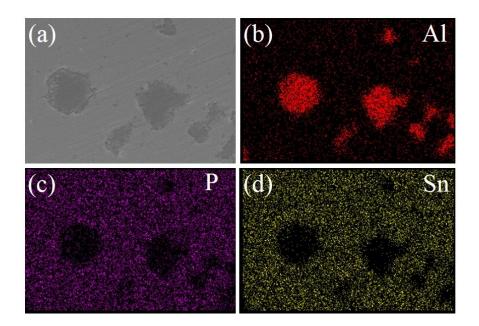


Figure S3. (a-d) EDS mapping images of BAM-PiG.

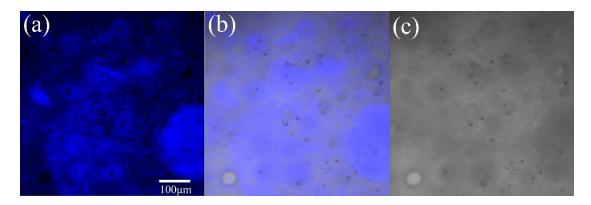


Figure S4. (a) CLSM images of BAM-PiG; (b) The superposition of brightfield and darkfield; (c) only darkfield.

Samples	0.1%	$\frac{\text{phor cont}}{0.5\%}$	1.0%	1.5%	2.0%
CASN-PiG	29.10	62.62	71.82	84.54	94.42
BAM-PiG	15.22	50.32	76.31	83.70	93.5
Dual-PiGP	25.32	58.51	72.93	85.22	93.90

Table S1. The quantum efficiency of CASN-PiG, BAM-PiG and Dual-PiGP under different

Table S2. The quantum efficiency of Dual-PiGP and Mixture-PiG under different phosphor content

Samples	0.1%	0.5%	1.0%	1.5%	2.0%
Dual-PiGP	25.31	58.51	72.94	85.26	93.90
Mixture-PiG	22.92	50.31	58.42	73.30	81.12