Supplementary Information

Construction of Ultrasensitive Electrochemiluminescent Aptasensor for Ractopamine Detection

Huiwen Xiong, Jingwen Gao, Ying Wang, Ziyi Chen, Miao-Miao Chen*, Xiuhua Zhang*, Shengfu Wang

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

* E-mail: chen_mm@whu.edu.cn and zhangxh@hubu.edu.cn

Supporting Information includes Figure S1-S3, Table S1.

Fig. S1. SEM images of (A) Ru@SiO₂ NPs and (B) Au NPs.

Fig. S2. Cyclic voltammograms obtained by bare GCE in 0.1 M PBS (pH 7.0) solution containing 1.5×10^{-6} M Rac.

Fig. S3. Reproducibility of the ECL aptasensor with five different electrodes in 0.1 M PBS (pH 7.0) solution containing 1.5×10^{-8} M Rac.

Detection method	Linear range (M)	Detection limit (M)	References
Visual detection	3.0×10 ⁻⁸ - 1.2×10 ⁻⁶	3.0×10 ⁻⁸	[1]
EC sensor	$1.0 \times 10^{-6} - 2.8 \times 10^{-5}$	1.5×10 ⁻⁷	[2]
CNPs EC sensor	$2.0 \times 10^{-9} - 3.0 \times 10^{-8}$	2.0×10 ⁻¹⁰	[3]
HPLC-MS/MS	1.5×10 ⁻⁹ - 1.5×10 ⁻⁷	3.0×10 ⁻¹¹	[4]
ECL aptasensor	$1.5 \times 10^{-12} - 1.5 \times 10^{-8}$	4.1×10 ⁻¹⁴	This work

Table S1. Comparison of the proposed sensor with other methods in Rac detection.

References

- [1] P. Wang, X. Su, L. Shi and Y. Yuan, Microchim. Acta, 2016, 183, 2899-2905.
- [2] M. Rajkumar, Y. S. Li, S. M. Chen, Colloid Surface B, 2013, 110, 242-247.
- [3] S. Yao, Y. Hu, G. Li, Y. Zhang, Electrochim. Acta, 2012, 77, 83-88.
- [4] Y. Dong, X. Xia, X. Wang, S. Ding, X. Li, S. Zhang, et al., Food Chem., 2011, 127, 327-332.