Experimental and Finite Element Method Studies for Femtomolar Cobalt Ions Detection by a DHI Modified Nanochannel

Supporting Information

Xuye Liu, Qiang Zeng*, Cheng Liu, Jie Yang and Lishi Wang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China

* Corresponding author. E-mail address: ceqzeng@scut.edu.cn (Qiang Zeng)

* Corresponding author. E-mail address: wanglsh@scut.edu.cn (Lishi Wang)

Scheme S1. Geometry of a 36 nm diameter conical nanopore. (A) to (K) shows the boundary between different conditions and details shown in Table S1.

Surface	Poisson	Nernst-Planck	Navier-Stocks
		Constant	Constant pressure
AB	Constant potential	concentration	$\mathbf{p} = 0$
	$\Phi = 0$	$\mathbf{c}_{\mathrm{K}} = \mathbf{c}_{\mathrm{Cl}} = 1 \mathrm{M}$	no viscous stress
		$\mathbf{c}_{Co} = 1 \text{ nM}$	$n[\mu(\nabla u + (\nabla u)^T)] = 0$
		Constant	Constant pressure
GH	Constant potential	concentration	$\mathbf{p} = 0$
	$\Phi = \mathbf{V}$	$\mathbf{c}_{\mathrm{K}} = \mathbf{c}_{\mathrm{Cl}} = 1 \mathrm{M}$	no viscous stress
		$\mathbf{c}_{\mathrm{Co}} = 0 \mathrm{M}$	$n[\mu(\nabla u + (\nabla u)^T)] = 0$
BC, CJ, KE, EF, FG	Zero charge	No flux	No slip
	$-\mathbf{n}\cdot(\mathbf{\epsilon}\nabla\mathbf{\phi})=0$	$-\mathbf{n} \cdot \mathbf{N}_{i} = 0$	$\mathbf{u} = 0$
JD, DK	-0.012 C/m ²	No flux	No slip
	$-\mathbf{n} \cdot (\mathbf{\epsilon} \nabla \mathbf{\phi}) = \sigma_{\mathbf{w}}$	$-\mathbf{n} \cdot \mathbf{N}_{i} = 0$	$\mathbf{u} = 0$
АН	axial symmetry	axial symmetry	axial symmetry

Table S1. Details of boundary conditions used in modeling

Figure S1. The effect of Co^{2+} recognition quite time on the detection current of 20 μ M of Co^{2+} in a DHI modified nanopore with 1 M KCl aqueous electrolyte solution (pH = 7).

Figure S2. Negative ionic current trace with the change of immobilization time.

Figure S3. Wetting conditions of DHI modified quartz plate before (right) and after (left) 1 mM CoCl2 solution treating.

Figure S4. I-V curve of unmodified nanopore which produced by HEAT = 550 (a), HEAT = 675 (b) and HEAT = 575 (c) whose diameters were calculated as ~ 60 nm, ~ 12 nm and ~30nm, respectively. (d) to (f) are their SEM results, respectively.

Figure S5. Voltage drop along the asymmetric axis under different applied voltage.

Potiential (V)	Slope (nA/lgCo ²⁺)	I	Goodness for linear
		Intercept (nA)	fitting (R ²)
-1	-0.4917	-8.843	0.9913
-0.8	-0.3985	-7.814	0.9837
-0.6	-0.299	-6.232	0.9696
-0.4	-0.2032	-4.322	0.9551
-0.2	-0.1035	-2.245	0.9404

Table S2. Results of linear fitting for reponses ionic current in alkaline electrolyte

Table S3. Comparison of analytical methods for the detection of Co²⁺

Method	Linear range	Limit of detection	Defenences	
	(nM)	(nM)	Kelerences	
Microextraction	0 (110 50 12	0.0(452	1	
method	0.6440 – 59.43	0.06432	1	
ICP-MS	33.93 - 1696	3.394	2	
Fluorescence	0404 00000	101.0	2	
spectrometry	848.4 - 20362	101.8	3	
Fluorescence	10 000		4	
spectrometry	10 - 800	2.4	4	
Modified				
Nanopore	$2.000 \times 10^{-5} - 2.000 \times 10^{5}$	9.402×10-7	This work	

Table S4. Results of the detection of Co²⁺ in tap water

Sample	Co ²⁺ added	Co ²⁺ measured	Bacovory (%)) RSD (%, N = 5)
	(n M)	(n M)	Ketovery (70)	
1	0	/	\	1.76
2	1	0.96	96.0	2.99
3	10	9.84	98.4	1.80
4	100	100.19	100.19	4.01

1. P. Berton and R. G. Wuilloud, *Analytica chimica acta*, 2010, **662**, 155-162.

2. A. Martín-Cameán, A. Jos, A. Calleja, F. Gil, A. Iglesias-Linares, E. Solano and A. M. Cameán, *Microchemical Journal*, 2014, **114**, 73-79.

3. C. Zeng, Y. Jia, Y.-I. Lee, X. Hou and L. Wu, *Microchemical Journal*, 2012, **104**, 33-37.

4. B.-Y. Han, X.-X. Hu, J. Xu and G.-H. He, *Journal of Nanoscience and Nanotechnology*, 2018, **18**, 7933-7938.