Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

> **Supplementary Information** 1 2 A novel extraction method for simultaneous determination of 3 neonicotinoid insecticides and their metabolites in human urine (In entire manuscript, the red font represents the modification) 4 Shiming Song^{1,2}, Yuan He¹, Bo Zhang¹, Mingwei Gui¹, Jiping Ouyang¹, Tao Zhang^{1,2*} 5 6 7 ¹ School of Environmental Science and Engineering, Sun Yat-Sen University, 8 Guangzhou 510275, China 9 ² Guangdong Provincial Key Laboratory of Environmental Pollution Control and 10 Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China 11 12 *Corresponding Author: 13 14 Tao Zhang School of Environmental Science and Engineering, Sun Yat-Sen University 15 135 Xingang West Street, Guangzhou, 510275, China 16 Tel: 86-20-84113454 17 Email: zhangt47@mail.sysu.edu.cn 18 19 Submission to: Analytical Method 20 21 22 23 24

25 Materials and Methods

26 Sample Preparation of QuEChERS Method

Urine sample (3 mL) was transferred into a pp tube and 1 ng of mixed internal standard solution was spiked. Then 3 mL of 1% acetic acid in acetonitrile was added, and the mixture was shaken vigorously for 2 min. After the tube was centrifuged at 5000 g for 5 min, the 1.5 mL of supernatant was transferred to a 2 mL of tube and mixed with 20 mg of purifying agents (PSA, C18, or GCB). The tube was shaken vigorously for 1 min and centrifuged at 5000 g for 5 min. Finally, the supernatant was placed into an LC vial to carry out analysis.

34

Pesticide	$t_R (min)^b$	Ion transition	Fragmentor (V)	Collision energy (eV)
ACE	6.4	223→56	140	13
		223→126 ^a	140	17
IMI	6.1	256→175	80	18
		256→209 ^a	80	10
CLO	5.9	250→132	80	6
		250→169 ^a	80	12
THD	6.9	253→186	140	10
		253→126 ^a	140	16
THM	5.6	292→181	80	22
		292→211 ^a	80	6
DIN	4.8	203→87	80	14
		203→129 ^a	80	8
DN	8.9	158→102	80	15
		158→57 ^a	80	20
UF	0.8	159→67	80	16
		159→85 ^a	80	14
5-OH-IMI	6.2	272→191	70	16
		272→225 ^a	70	10
N-dm-ACE	1.6	209→90	70	12
		209→126 ^a	70	26
ACE-d ₃	6.4	226→59	80	16
		226→126 ^a	80	18
IMI-d ₄	6.1	260→179	120	14
		260→213 ^a	120	10
CLO-d ₃	5.9	253→172	80	10
		253→132 ^a	80	10
$THD-d_4$	6.9	257→190	80	14
		257→126 ^a	80	19
THM-d ₃	5.6	295→184	80	20
		295→214ª	80	10

Table S1 MRM transitions and other LC-MS/MS conditions.

^a Transitions used for quantification ion; ^b Retention time

41 Figure S2 LC-MS/MS chromatography in MRM acquisition mode of NEOs and their
42 metabolites (100 ng/mL) testing difference mobile phase: ultrapure water/acetonitrile
43 (a) and ultrapure water/methanol (b)

46 Figure S3 LC-MS/MS chromatography in MRM acquisition mode of NEOs and their
47 metabolites (100 ng/mL) testing difference mobile phase: 0.1% formic acid in ultrapure
48 water/acetonitrile (a) and 5 mM ammonium acetate in ultrapure water /methanol (b).