
Supporting information

Opposite changing dual-emissions luminescent of gold nanoparticles by sulfhydryl to develop pesticides biosensing strategy

Yuliang Pan,^{a,b} Yong Li,^{a,b} Huan Ma,^a Wang Li^{a,*}

^a Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, P. R. China

^b College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China

Figure S1. CD spectra of the GS-AuNPs without (a) or with (b, c) cysteine. Data for GS-AuNPs was shown for comparison (a). Curve a, b and c represented GS-AuNPs with different concentration of cysteine: GS-AuNPs 12 μ L per 100 μ L solution, cysteine 1.67 mM (b) and 6.67 mM (c).

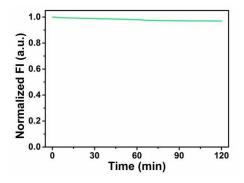
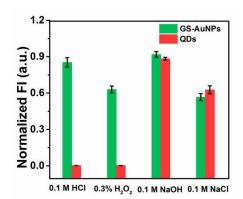



Figure S2. Photostability of GS-AuNPs.

Figure S3. Comparison of chemical stability between GS-AuNPs and MPA-coated CdTe QDs in different media. The fluorescence emission from control experiment (see **Figure 1**) was set to 1. GS-AuNPs and CdTe QDs were both added to $0.3 \% H_2O_2$, 0.1 M HCl, 0.1 M NaCl, or 0.1 M NaOH, and were recorded with an excitation wavelength at

400 nm and 474 nm respectively.

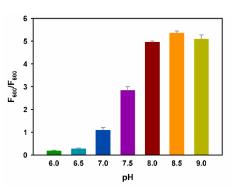
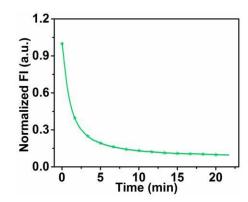
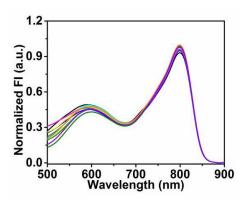




Figure S4. The optimization of pH.

Figure S5. The reaction kinetics of AChE, ATCh and GS-AuNPs system at 800 nm emission.

Figure S6. The influence of these ten pesticides upon the whole reaction system. (pesticides: $2 \mu g/mL$, GS-AuNPs: $3 \mu L$ per 100 μL solution)