Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2019

Supplementary information

Non-enzymatic determination of purine nucleotide using carbon dots modified glassy carbon electrode

R. Karthikeyan, D. James Nelson and S. Abraham John*

Centre for Nanoscience and Nanotechnology Department of Chemistry, The Gandhigram Rural Institute Gandhigram-624 302, Dindigul, Tamilnadu, India E-mail : <u>abrajohn@yahoo.co.in</u>

*Corresponding author: Tel: +91 451 245 2371; Fax : + 91 451 245 3031

E-mail: abrajohn@yahoo.co.in, s.abrahamjohn@ruraluniv.ac.in

Fig. S1.(A) UV-visible spectra obtained for aqueous solution of (a) glucose and (b) CDs. Inset: photographs obtained for CDs (a) under ambient light and (b) under UV light.

Fig. S2. 3D fluorescence spectra recorded for the colloidal solution of CDs.

Fig.S3.(A) Nyquist, (B) Bode-amplitude and (C) Bode-phase angle plots for bare GC and CD/GC electrodes in 1 mM Ru(NH₃)₆Cl₃ in 0.2 M PB solution (pH3) at scanning frequencies from 0.01 to 100 000 Hz. Inset: equivalent electrical circuit used for fitting the impedance spectra.

Fig.S4. XPS of bare GC plate in the C1s region.

Fig.S5.SEM images obtained for (A) bare GC, (B) CD/GC plates.

Fig. S6. LSVs obtained at CD/GC electrode for 0.5 mM INO in 0.2 M PB solution at 50 to 500 mV s^{-1} (a-j). **Inset:** Calibration plot for oxidation current of INO against square root of scan rates.

Fig. S7. DPVs obtained at CD/GC electrode for 20 μ M INO in the presence of 1 mM each UA and XN in 0.2 M PB solution (pH 7.2).

Fig. S8. DPVs obtained at CD/GC electrode for each increment of 5 μ M INO in the presence of 200 μ M of adenosine in 0.2 M PB solution (pH 7.2).

Fig. S9. Amperometric i–t curves obtained for addition of (a) 100 nM of INO and each 100 μ M of (b) urea, (c) Ca²⁺, (d) Mg²⁺, (e) oxalate, (f) K⁺ (g) Na⁺ (h) PO₄³⁻ (i) SO₄²⁻ (j) NH₄⁺ (k) NO₃⁻ and (l) glucose at the time interval of 50 s at CD/GC electrode in 0.2 M PBS (pH 6). E_{app} = +1.4 V.

Table S1 Impedance spectral da	ita
--------------------------------	-----

parameters	bare GCE	CDs/GCE
R _s (kΩ)	0.15	0.17
C (μF)	4.31	2.54
$R_{ct}(k\Omega)$	40.96	21.20
k _{et} (cm s ⁻¹)	0.92×10 ⁻³	1.79×10 ⁻³

S.No	Added	Found	Recovery (%)	RSD (%)
	(µM)	(μΜ)		
	20.0	19.90	99.50	
BS1	40.0	39.70	99.20	1.5
	60.0	59.65	99.40	

Table S2Determination of INO in human blood serum

Table S3	Determination	of INO in	human	urine	samp	les

S.No	Added (µM)	Found (µM)	Recovery (%)	RSD (%)
	50.0	49.85	99.70	
US1	100.0	99.60	99.60	1.0
	150.0	149.70	99.60	