Electronic Supplementary material

Sensitive detection of L-Cysteine using highly stable Pd@Ti₃C₂T_x (MXene) nanocomposite modified glassy carbon electrode

P Abdul Rasheed, Ravi P Pandey, Khadeeja A Jabbar, Janarthanan Ponraj, Khaled A

Mahmoud*

Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar

* To whom all correspondence should be addressed:

E-mail: kmahmoud@hbku.edu.qa, Fax: +974 445441528, Phone: +974 44541694

Fig. S1. EDS spectra of (a) $10\%Pd@Ti_3C_2T_x$, (b) $20\%Pd@Ti_3C_2T_x$ and (c) $20\%Pd@Ti_3C_2T_x$ composites

Figure S2. (a) Energy dispersive spectroscopy (EDS) elemental mix mapping image of $Pd@Ti_3C_2T_x$ composite. Inset shows the SEM image of $Pd@Ti_3C_2T_x$ composite; (b-f) Energy dispersive spectroscopy EDS elemental mapping of $Pd@Ti_3C_2T_x$ composite with separate elements.

Fig. S3. (a), XPS survey spectra for $Ti_3C_2T_x$ and $Pd@Ti_3C_2T_x$; (b) high resolution XPS spectrum for C 1s; (c) high resolution XPS spectrum for O 1s for $Ti_3C_2T_x$ and $Pd@Ti_3C_2T_x$; and (d) high resolution XPS spectrum of Pd 3d for the $Pd@Ti_3C_2T_x$.

Fig. S4. (a) Cyclic voltammogram of $Ti_3C_2T_x/GCE$ showing several consecutive scans run in a potential window from 0 V to 0.8 V at a sweep rate of 100 mV s⁻¹ in 0.1 M PB (pH 7.0). (b) Cyclic voltammogram of 20%Pd@Ti_3C_2T_x/GCE showing several consecutive scans run in a potential window from 0 V to 0.7 V at a sweep rate of 100 mV s⁻¹ in 0.1 M PBS (pH 7.0).

Fig. S5. Cyclic voltammogram of bare GCE in absence and presence of 1 mM L-Cys.

Fig. S6. (a) Cyclic voltammogram of 20%Pd@Ti₃C₂T_x/GCE modified electrode in 0.1 M PB (pH 7) with the presence of 100 μ M L-Cys scanning at different scan rates. (b) Plot of peak current as a function of scan rate ranging from 20 to 100 mV·s⁻¹.

Fig. S7. (a) Chronoamperometric response of 20%Pd@Ti₃C₂T_x/GCE electrode with different concentrations of L-Cys at +0.6V. (b) Plot of current vs molar concentration. The error bar indicates the standard deviation from the three independent measurements.

Fig. S8. Chronoamperometric curves of three different 20%Pd@Ti₃C₂T_x/GCE with 5 μ M L-Cys showing the repeatability of the sensor.

Fig. S9. Chronoamperometric response of 20%Pd@Ti₃C₂T_x/GCE electrode with different concentrations of L-Cys spiked in human urine.

Samples	L-Cys added	L-Cys detected	Recovery (%)	RSD (%)
	(µM)	(µM)		
S1	5	4.67	93.57	2.6
	10	9.54	95.43	3.83
S2	5	5.17	103.4	4.16
	10	9.64	96.95	4.72

Table S1: Recovery of L-Cys in human urine samples by using the 20%Pd@Ti₃C₂T_x/GCE.