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Collection and preparation of the sample (Dat1) 

 

The sample Dat1 is a soil sample collected in the vicinity of a recreational boatyard (small harbour) located in 

Aalborg, Denmark. The sample was collected from an area of 2.25 m2 (1.5 x 1.5 m), collecting five soil sub-samples 

(one sample at each corner of this square area and one at the centre of the area) which were then mixed together 

and stored in a glass jar. The soil was transferred in a 2 litres beaker and pre-oxidised using a 10 % hydrogen peroxide 

solution (H2O2), then the liquid was evaporated, and the sample was dried in an oven at 55 ˚C for seven days. A sub-

sample of 50 g of the dry weight was submitted to air-assisted density separation using zinc chloride solution (density 

1.9 g cm-3). Briefly, the sample was poured into a glass separation funnel (1 L capacity) and the funnel inlet was 

connected to a dry compressed air supply. The air was introduced into the funnel opening the stopcock and the 

sample was aerated for thirty minutes to ensure a proper mixing of the soil matrix, also helping to detach the 

particles from the environmental matrix. After the mixing step, the sample was let to settle overnight, and the 

bottom part was discarded. The top part including the floating particles was then filtered through a pre-muffled 

steel mesh filter (diameter 47 mm; mesh size 10 µm) and flushed with ultrapure water using a glass filtration unit 

connected to a vacuum pump. The material collected on the filter was removed by flushing it into a beaker (1 L) with 

200 mL of ultrapure water. The sample was then submitted to a catalysed oxidation using hydrogen peroxide (H2O2) 

and Iron Sulphate (FeSO4) (Fenton Reaction). After 24 h the sample was filtered onto a 10 µm steel filter (the same 

used for the previous steps) and submitted to a second flotation with ZnCl2 solution in a small separation funnel 

(100 mL capacity) following the same procedure described above. After this step, the sample was split in two using 

a 500 µm sieve. The fraction smaller than 500 µm was filtered again and the material was flushed into a 150 mL 

beaker using 50 % v.v. Ethanol. The liquid containing the sample was then transferred in small aliquots into a 10 mL 

glass headspace vial and evaporated using a gentle flow of nitrogen, until the whole sample was transferred and 

dried in the vial. A known amount of 50 % v.v. Ethanol (5 mL) was then added into the vial. A sub-sample (200 µL) 

was deposited onto a Zinc Selenide window (13 mm diameter x 2 mm thickness) using a compression cell (Pike 

Technologies, Fitchburg, WI, USA) and let it dry overnight prior to submit it to FPA-Imaging-µFTIR analysis. 

 

The analysis was carried out using FPA-Imaging-µFTIR (Cary 620-670 FT-IR microscope, Agilent Technologies, Santa 

Clara, CA, USA). A background scan was collected before each sample scan on a clean window using 120 co-added 

scans in the spectral range of 3750 – 850 cm-1 at 8 cm-1 resolution. Subsequently, the entire area of the sample’s 

window was scanned using 30 co-added scans applying the same settings as for the background scan. A 15x 

Cassegrain objective was used, resulting in a pixel size of 5.5 µm on the 128x128 Mercury Cadmium Telluride (MCT) 

FPA detector. Afterwards, we analysed the acquired infrared map with an in-house built software called siMPle1, 2, 

an updated software derived from MPhunter, previously used by Liu et al.1, Simon et al.3 and Vianello et al.4. The 

software allows for the analysis of each pixel constituting the map, comparing the spectra obtained from the 

sample’s scan to a library of reference spectra applying Pearson correlation. The library was composed of 427 

spectra divided in 75 groups, including polymers and natural materials. The software assigns the material with the 

highest correlation score to each pixel and “builds” the particle based on the scores attributed to adjacent pixels.  
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Analysis of Dat1 

 

Removal of the fluctuating CO2 band and noisy spectra 

Both FTIR datasets were acquired under ambient conditions with a fluctuating CO2 concentration over the 

measurement period of several hours. This adds variance to the data not related to the target of the analysis: finding 

and identifying particles. As proposed by Primpke et al.5 and shown in Fig. S1 a), in an initial pre-processing step, the 

resulting CO2 band was replaced by a straight line between 2420 cm-1 and 2200 cm−1. For an improved estimation 

of the local baseline, 15 neighbouring points were used in this approximation. Using the CO2 corrected raw data, 

inFig. S1 b) spectra with high noise level were removed from Dat1. A 2nd order polynomial was used to subtract the 

baseline between 2673 cm-1 and 2441 cm-1 prior to calculating the standard deviation in this range. Spectra 

exceeding a threshold of 0.005 were removed. 

Results for a random spectrum taken from Dat1 are shown in Fig. S1. Whereas in a) the CO2 absorption is the most 

significant feature in the original spectrum, this is not the case after removing the band. The noise level determined 

in b) for this spectrum is below the threshold. 

 

Fig. S1 a) Removal of fluctuating CO2 band prior to analysis by introducing a straight line between 2430 cm-1 and 
2200 cm-1. b) Estimation of the noise level by calculating the standard deviation of baseline corrected data between 
2673 cm-1 and 2441 cm-1. 
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iPCA with the entire dataset 

Spectra with a significant contribution to the variance of the data (particles) were separated from spectra carrying 

little information (substrate, blank) using iPCA. 

Iinitially iPCA (n_components = 20, batch_size = 500). was performed on all the spectra of Dat1 using Savitzky-Golay 

first derivative spectra smoothed over three datapoints with a 2nd order polynomial. Noisy spectra with high 

absorbance levels are the main contributors to the global variance of the dataset and thereby dominate the iPCA 

results. The scores plot in Fig. S2 a) show no formation of groups, the loadings Fig. S2 b) possess no spectral features 

and the cumulative variance over the first 20 principal components rises very slowly and linearly, reaching only 

about 10 % (Fig. S2 c)). 

 

 

Fig. S2 Dat1: iPCA with the entire datasets. a) scores plot of PC 1 versus PC 2. shows no structure in the data. b) loadings of 
the first four principal components show no spectral features. c) the first 20 principal components cover merely 10 % of the 
variance.  
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Identification of noisy spectra 

 

A 2nd order polynomial was used to subtract the baseline offset between 2673 cm-1 and 2441 cm-1 prior to calculating 

the standard deviation in this range as shown in Fig. S1. Spectra exceeding a threshold of 0.005 were identified as 

noisy spectra.  

In Dat1 151268 noisy spectra were found and are highlighted in Fig. S3. Noisy spectra are located mainly in the 

corners of the imaged area. Radiation is almost completely blocked in this region yielding very high absorbance 

values >> 1 and therefore also very noisy spectra. In addition, with this approach some spectra originating from 

particles were removed. They are mainly located in areas of particle agglomerations such as the centre of the image. 

Spectra were measured in transmission which causes thick particles or agglomerates of particles to absorb almost 

all the light. Reflection and scattering6, 7 may in addition contribute to higher absorbance and lower signal to noise 

ratio. 

 

Fig. S3 Dat1: spectra with a high noise level (pink) are found on some particles and in the corners of the image. 
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iPCA selection of particle spectra after elimination of noise 

Dimensionality reduction with iPCA (n_components = 20, batch_size = 500). was performed on the spectra of Dat1 

remaining after removing the noisy data. Savitzky-Golay first derivative spectra smoothed over three datapoints 

with a 2nd order polynomial were used. The scores plot in Fig. S4 a) show some structure in the data compared to 

Fig. S2 and the loadings Fig. S4 b) possess spectral features in the ranges expected for microplastics and natural 

organic residue (C-H stretching between ca. 2800 cm-1 and 3000 cm-1, some functional groups such carbonyls or 

amides between ca. 1800 cm-1 and ca. 1500 cm-1 and the fingerprint region at wavenumbers smaller than ca. 

1500 cm-1). The cumulative variance over the first 20 principal components accounts for 49 % of the total variance 

in the data, but for the selection of particle spectra only 12 PCs explaining 43 % of the variance were used.  

Fig. S4 Dat1: iPCA after the removal of noisy spectra. a) scores plot of PC 1 versus PC 2 shows structure in the data. b) 
loadings of the first four principal components show spectral features. c) the first 20 principal components cover  
49 % of the variance. 
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iPCA of selected spectra 

Spectra of selected particles were subject to iPCA (n_components = 20, batch_size = 500). Based on the CO2 

corrected raw data, Savitzky-Golay first derivative and smoothing over 15 datapoints using a 2nd order polynomial 

was used. Subsequently, normalization in the range from 3714 cm-1 to 883 cm-1 to unit length was performed. The 

scores values of the first 20 principal components were used in k-means (n_clusters = 8) clustering (Fig. S6). The first 

20 principal components explain 85 % of the variance of the data, much more than before particle selection (Fig. S4 

b)). The corresponding loadings of the first four PCs are shown in Fig. S5 a) 

 

 

Fig. S5 Dat1: iPCA results of the selected particle spectra. a) The loadings of the first four principal components show 
spectral features. b) Explained variance of the dataset depending on the number of principal components considered.  
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Fig. S6 Dat1: iPCA scores of PC1 versus PC2—PC7 of selected particle spectra clustered with k-means and labeled according 
to results obtained by comparing the mean spectrum of each cluster to a spectral library.  
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Evaluation of Dat1 with the siMPle software 

Results obtained with the presented exploratory approach were qualitatively compared to a state-of-the-art 

automated library search with the siMPle software1, 2 in Fig. S7. To give a quantitative comparison between the 

results is difficult because numerous parameters may be tuned by the user. The results are strongly affected by the 

spectral library used in the analysis and the thresholds which determine whether a match is obtained. 

 

• The library search shows a smaller number of particles. Particles found with the exploratory approach but 

not by library search belong mainly to the four groups: PFTE-like (red) and alkyd (light green) unidentified 

(green) or spectra with artifact (light blue). 

• Plant (cellulose) and protein-based material show good agreement 

• Polyethylene, Polypropylene good agreement 
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Fig. S7 Dat1: Particles identified by an automated library search with the siMPle software1, 2. 
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Analysis of RevEnv2 

Dataset RevEnv2 is less affected by very high absorbance and noisy spectra which dominated the initial iPCA in Dat1 

shown in Fig. S2.  

 

Selection of particle spectra was performed with the CO2 corrected raw data. Baseline correction was achieved with 

Savitzky-Golay. first derivative spectra and smoothing with a 2nd order polynomial over 15 datapoints. Spectra 

belonging to particles were selected from iPCA (n_components = 20, batch_size = 500) scores. The first 12 PCs were 

considered and spectra closer to the origin than 0.06 were removed. 

 

The first 12 principal components together explain 93 % of the variance found in the data. This allows to reduce the 

dimensionality of the dataset significantly without a mayor loss of information. 

Selecting only the spectra significantly contributing to the variance in the data, the number of spectra in RevEnv2 

was reduced by 89 %, from 1763584 to 191195. 

 

 

Fig. S8 RevEnv2: a) A threshold of 0.06 is used to remove blank spectra which carry little variance and are found close to the 
origin in the PCA scores plot. b) hexagonal binning of the scores in the PC 1 and PC 2 plane shows that the density of points is 
exceptionally high close to the origin. c) Spectra remaining after thresholding can be assigned to particles and the mounting 
of the substrate (corners).   
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iPCA of selected particle spectra 

Selected spectra of particles were subject to iPCA. The scores plot in Fig. S9 show that several distinct groups are 

present in the data. k-means clustering with 8 clusters was used to systematically group the spectra. Chemical 

species were assigned. Due to the non-spherical shape of clusters 1 (unidentified), 6 (polyethylene / polyethylene 

oxidized) and 7 (polypropylene), k-means is not a suitable algorithm to separate those groups well. HDBSCAN (not 

shown) performs better on those clusters of different shape. 

 

Fig. S9 RevEnv2: iPCA scores showing the clustering results with k-means for selected combinations of the principal 
components PC 1 to PC 5. 
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Fig. S10 RevEnv2: two-dimensional representation of the k-means clusters. Most particles are clearly assigned to one cluster. 
Incomplete separation between clusters unidentified (blue), polyethylene (brown) and polypropylene (pink) is also found in 
the two-dimensional image. 
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Fig. S11 RevEnv2: a) Spectra transformed into 2D space by UMAP with manual interactive clustering and substances 
assigned to clusters based on library search and visual examination. b) Clustering results represented as two-dimensional 
image 
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Baseline correction by an iterative polynomial fit 

Python code for the custom baseline correction used for an initial visualization of the data: 

1. def baseline_poly(X, order=2):   
2.     """  
3.     author: Frank Westad  
4.     Baseline correction by iterative substraction of a polynomial preventing negative values  
5.     """   
6.     N, M = X.shape   
7.     xw = list(range(M))    #    
8.     Xw = np.zeros((N, M))  # temp x-values   
9.     for i in range(N):   
10.         Xw[i,:] = xw   
11.     Yfit = np.zeros((N,M))   
12.    
13.     P = np.zeros((N, order+1))   
14.     Modpoly = X.copy()   
15.    
16.     # iterative substraction of polynomial fit       
17.     for k in range(50):   
18.         for i in range(0,N):   
19.             P[i,:] =  np.polyfit(Xw[i,:], Modpoly[i,:], order)   
20.         for i in range(0,N):   
21.             p = np.poly1d(P[i,:])   
22.             Yfit[i,:] = p(Xw[i,:])   
23.         #find values still below zero and asign them positive values   
24.         Diff = Yfit-Modpoly       
25.         mask = Diff < 0   
26.         Modpoly[mask] = Yfit[mask]   
27.            
28.     Xny = X-Yfit   
29.     return Xny 
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