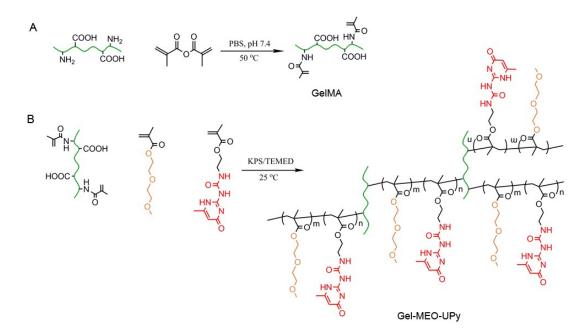
Supporting Information

Quadruple hydrogen bonds and thermo-trigged hydrophobic interactions generate dynamic hydrogels to modulate transplanted cell retention

Sa Liu,^{a, c, d} Dawei Qi, ^{a, c} Yunhua Chen, * ^{a, c, d} Lijing Teng, ^{b, c} Yongguang Jia ^{a, c, d} and Li Ren*


^{*a.*} School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

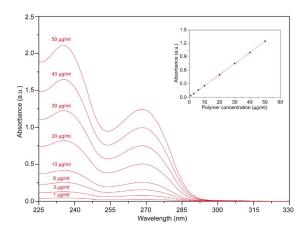
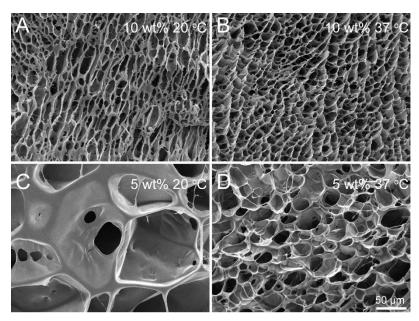
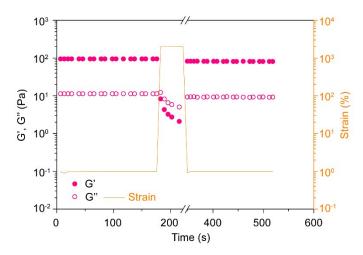
^{b.} School of Medicine, South China University of Technology, Guangzhou 510006, China.

^{*c*} National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.

^{*d*} Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China

Email: msyhchen@scut.edu.cn; psliren@scut.edu.cn

Fig. S1 The synthesis route of (A) GelMA, and (B) branched supramolecular polymer Gel-MEO-UPy by one-pot free radical polymerization.

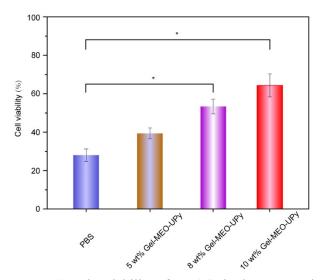

Figure S2. UV spectra of UPyMA monomer at different concentrations.

Figure S3. SEM images of lyophilized 5 wt% and 10 wt% Gel-MEO-UPy hydrogels after being incubated at different temperatures.

Figure S4. Cyclic strain sweep measurement of 10 wt% Gel-MEO-UPy hydrogel with applied oscillatory strain being alternated between 1% and 2000% at 37 °C, with introducing resting time 2 min before applying the 1% strain sweep.

Figure S5. The viability of BMSCs in the supramolecular polymer solutions with varied concentrations after syringe injection (22 Gauge) at 20 °C, * refers p<0.05.