Electronic Supplementary Information (ESI)

Crystal-to-crystal interconversion of open and closed dicopper(II) paddlewheels in a heterotrimetallic coordination polymer

Hayato Ohwaki, Nobuto Yoshinari, and Takumi Konno*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan) konno@chem.sci.osaka-u.ac.jp

Experimental Section

A. Preparation of [Au₂Pd(dppm)(D-pen)₂] ([1]).

To a pale yellow solution containing 1.15 g (986 µmol) of $[Au_2(dppm)(D-Hpen)_2] \cdot 5H_2O^{-13}$ in 100 mL of ethanol, 0.22 g (986 µmol) of Pd(OAc)_2 was added. The mixture was stirred at room temperature for 3 h, which gave a yellow solution. The yellow solution was evaporated to dryness, and the yellow residue was dissolved in 40 mL of ethanol/water (1:1). The yellow solution was allowed to stand at room temperature for 6 days. After filtration to remove a small amount of yellow crystalline film, 100 µL of EtOH was added to the resulting yellow filtrate. The mixture was allowed to stand at room temperature for 2 days, which gave yellow block crystals ([1]·8H₂O). One of the crystals was used for the single-crystal X-ray analysis. Yield: 0.92 g (71%). Anal. Found: C, 31.78; H, 4.08; N, 2.11%. Calcd for [Au₂Pd(dppm)(D-pen)_2]·8H₂O = C₃₅H₅₆N₂O₁₂P₂S₂Au₂Pd: C, 31.77; H, 4.27; N, 2.12%. IR spectrum (cm⁻¹, KBr disk): 1605 (vcoo), 1437 (vPh), 1102, and 786-690 (vP-Ph). ¹H NMR spectrum (ppm from TMS, methanol-*d*₄): δ 1.54 (s, 6H), 1.75 (s, 6H), 3.39 (s, 2H), 7.38-7.77 (m, 20H). ³¹P NMR spectrum (ppm from S% H₃PO₄, methanol-*d*₄): δ 33.2 (s).

B. Preparation of $[Cu_2(H_2O)_4 \{Au_2Pd(dppm)(D-pen)_2\}_2](NO_3)_4$ ([2](NO₃)₄).

To a yellow solution containing 60 mg (45.3 µmol) of [1]·8H₂O in 2 mL of ethanol, 0.1 M $Cu(NO_3)_2$ (2.0 mL, 2.0 mmol) in a mixture of water/ethanol (v/v = 4/1) was added, which gave a blue green solution. The solution was carefully evaporated in a closed desiccator at room temperature for 6 days, which gave green block crystals ([2](NO₃)4·4H₂O). One of the crystals was used for the single-crystal X-ray analysis. Yield: 49 mg (75%). Anal. Found: C, 29.33; H, 3.34; N, 3.89%. Calcd for [Cu₂(H₂O)₄{Au₂Pd(dppm)(D-pen)₂}₂](NO₃)4·4H₂O = C₇₀H₉₆N₈O₂₈P₄S₄Au₄Pd₂: C, 29.22; H, 3.36; N, 3.89%. IR spectrum (cm⁻¹, KBr disk): 1650 and 1605 (v_{COO}), 1437 (v_{Ph}), 1385 (v_{NO3}), 1102, and 789-690 (v_{P-Ph}).

C. Preparation of [Cu₂(H₂O)₂{Au₂Pd(dppm)(D-pen)₂}₂](NO₃)₄ ([3](NO₃)₄).

Green crystals of $[2](NO_3)_{4}$ ·4H₂O were dried under 0.6 kPa at room temperature for 15 min to give dehydrated crystals ($[3](NO_3)_{4}$ ·3H₂O). During this treatment, cracks occurred in the crystals. One of the single-crystal domains was used for the single-crystal X-ray analysis, from which its formula was estimated to be $[Cu_2(H_2O)_2\{Au_2Pd(dppm)(D-pen)_2\}_2](NO_3)_4$ ·3H₂O, together with the water adsorption analysis (Figure S11). The elemental analysis of $[3](NO_3)_4$ ·3H₂O as well as measurement of its IR spectrum could not be carried out because crystals of $[3](NO_3)_4$ ·3H₂O quickly adsorb water molecules under ambient conditions to be revert back to $[2](NO_3)_4$ ·4H₂O.

D. Physical Measurements.

The IR spectra were recorded on a JASCO FT/IR-4100 spectrometer using KBr disks at room temperature. The ¹H and ³¹P NMR spectra were measured on a JEOL ECA-500 NMR spectrometer at room temperature using tetramethylsilane (TMS, δ 0.0 ppm) as the internal standard for ¹H NMR and triphenyl phosphate (δ -17.6 ppm) as the external standard for ³¹P NMR. The elemental analyses (C, H, N) were performed using a YANACO CHN coder MT-5

or MT-6. TG-DTA measurements were performed on a SHIMADZU DTG60 under N₂ gas flow (50 mL/min) using Al₂O₃ as a reference with the scan rate of 5.0 °C/min. The X-ray fluorescence spectrometry was performed on a SHIMADZU EDX-720 spectrometer. The sorption isotherms for H₂O were performed on a BELSORP-max volumetric adsorption instrument. The powder X-ray diffraction patterns were recorded under controlled temperature in the transmission mode [synchrotron radiation $\lambda = 1.0$ Å; 2θ range = 2–78°; step width = 0.01°; data collection time = 1 min] on a diffractometer equipped with a MYTHEN microstrip X-ray detector (Dectris Ltd.) at the SPring-8 BL02B2 beamline. The crystals were loaded into a glass capillary tube (diameter = 0.3 mm). The sample was rotated during the measurements. The powder simulation patterns were generated from the single-crystal X-ray structures using Mercury 3.9. The crystals for vacuum-condition measurements were loaded into a glass capillary tube (diameter = 0.5 mm), and the glass capillary tube was connected with a rotary pump under controlled pressure monitored by a Pirani vacuum gauge. The sample was oscillated during the measurements.

E. Magnetic susceptibility measurements.

Magnetic susceptibility data were collected for crystalline samples on a QUANTUM DESIGN MPMS SQUID magnetometer at temperatures ranging from 2 to 300 K under an applied magnetic field of 5000 Oe. The magnetic susceptibility data were analyzed by a least-square fitting based on the Van Vleck model considering temperature independent paramagnetism (T.I.P), the spin coupling parameter (2*J*), and the molar ratio of paramagnetic impurity (α).

$$\chi_{\rm M}T = \frac{N_A \mu_B^2 g^2}{3k} \frac{6}{1 + \exp(-2J/kT)} (1 - \alpha) + \frac{N_A \mu_B^2 g^2}{4k} 2\alpha + T.I.P. \times T$$

The original data and simulated curves are illustrated in the same chart in Figure 3. The magnetic susceptibility data are summarized in Table S2.

F. X-ray diffraction analysis.

The single-crystal X-ray diffraction measurement for [1] was performed on a RIGAKU FR-E Superbright rotating-anode X-ray source with Mo-target ($\lambda = 0.71075$ Å) equipped with a RIGAKU RAXIS VII imaging plate as a detector at 200 K. The intensity data were collected by the ω scan mode and were corrected for Lorentz polarization. Empirical absorption corrections were also applied. The single-crystal synchrotron radiation X-ray diffraction measurement for [2](NO₃)₄ was carried out at the BL02B1 beamline in Spring-8 at 100 K ($\lambda = 0.7$ Å). The intensity data were collected by the ω scan mode and were corrections were also applied. The single-crystal synchrotron radiation. Empirical absorption corrections were also applied. The single-crystal synchrotron radiation. Empirical absorption corrections were also applied. The single-crystal synchrotron radiation X-ray diffraction measurement for [3](NO₃)₄ was carried out on an ADSC Q210 CCD area detector with synchrotron radiation at the 2D beamline in the Pohang Accelerator Laboratory (PAL) at 100 K ($\lambda = 0.63$ Å). The diffraction images were processed by using HKL3000.

The structures of the compounds were solved by direct methods using SHELXS-2014.^{S1} The structural refinements were carried out using full matrix least-squares (SHELXL-2014).^{S1} Hydrogen atoms were included in the calculated positions, except for those of the water molecules. The high R_{int} value of 0.175 for crystal [2](NO₃)₄ is most likely due to the twinning

of crystal.

The crystal data are summarized in Tables S1 and S3.

References.

(S1) G. M. Sheldrick, Acta Cryst., 2008, A64, 112.

2. Figures

Figure S1. ¹H NMR spectrum of [**1**] in methanol-*d*₄. The spectrum was measured at 298 K. (*) denotes the signals from solvents. The signals corresponding to the NH₂ group of D-pen and the CH₂ group of dppm were not observed in the spectrum, most likely due to the rapid H/D exchange for these protons.

Figure S2. ³¹P NMR spectrum of [1] in methanol-*d*₄. The spectrum was measured at 298 K.

Figure S3. The IR spectrum of [1].

Figure S4. A perspective view of the molecular structure of [1]. Color code: Au, pink; Pd, blue-green; S, yellow; O, pink; N, blue; and C, gray. H atoms were omitted for clarity.

Figure S5. The IR spectrum of [2](NO₃)₄.

Figure S6. Perspective views showing the environments around nitrate ions accommodated inside the 1D coordination polymers in (a) [**2**](NO₃)₄ and (b) [**3**](NO₃)₄. Pink dashed lines represent hydrogen bonds. All H atoms except for amine groups were omitted for clarity.

Figure S7. (a) The simulated PXRD pattern of $[3](NO_3)_4$, the observed PXRD patterns of (b) a freshly prepared sample of $[3](NO_3)_4$, (c) a sample after exposure to humidified air for 3 min, (d) a sample after exposure to humidified air for 8 min, and (e) the simulated PXRD pattern of $[2](NO_3)_4$.

Figure S8. Simulated (red) and observed (black) powder X-ray diffraction patterns of [2](NO₃)₄.

Figure S9. Simulated (red) and observed (black) powder X-ray diffraction patterns of [3](NO₃)₄.

Figure S10. TG/DTA curves of [2](NO₃)₄.

Figure S11. H₂O vapor adsorption and desorption isotherms at 298 K for the activated sample of $[2](NO_3)_4$. The two-step hysteresis loop supports the chemical sorption of three water molecules in the framework of $[2](NO_3)_4$.

Figure S12. Packing views of (a) $[2](NO_3)_4$ from *a* axis and (b) $[3](NO_3)_4$ from *b* axis, emphasizing the transformation of crystal lattice.

parameter	N···O∕ Å	N-H···O /°
	[2](NO ₃) ₄	
N1 H1 O13	2.87(3)	168.2
N2 H4 O15	3.01(4)	154.5
N4 H44 O13	2.96(3)	164.4
	[3](NO ₃) ₄	
N4 H43 O21	2.84(3)	165.1

Table S1. Effective hydrogen-bonding parameters between amine groups and nitrate ions.

Table S2. Fitting parameters obtained from the magnetic data analysis.

parameter	[2](NO ₃) ₄ increasing	[2](NO ₃) ₄ decreasing	[3](NO ₃) ₄
g	2.1	2.1	2.1
2 <i>J</i> / J	-114(1)	-308(1)	-288(1)
T.I.P / cm^3mol^{-1}	2.8(1) × 10 ⁻⁴	$3.7(1) \times 10^{-4}$	$3.3(1) \times 10^{-4}$
α	0.02(1)	0.04(1)	0.03(1)

	[1]·11.5H ₂ O·0.25EtOH	[2](NO ₃) ₄ ·4H ₂ O	[3](NO ₃) ₄ ·3H ₂ O
λ (Å)	0.71073	0.7002	0.6300
Formula	C142H258Au8N8O63P8 Pd4S8	C70H96Au4Cu2N8O28P4 Pd2S4	C70H90Au4Cu2N8O25P4 Pd2S4
Color, form	Yellow, block	Green, block	Green, block
$M_{ m w}$	5591.12	2877.41	2823.36
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$	<i>I</i> 2
<i>a</i> (Å)	16.2767(3)	16.8393(17)	20.842(4)
<i>b</i> (Å)	37.3828(7)	20.715(2)	17.342(4)
<i>c</i> (Å)	16.9637(3)	26.283(3)	25.184(5)
α (°)	90	90	90
β (°)	99.887(7)	90	96.43(3)
γ (°)	90	90	90
$V(Å^3)$	10168.6(4)	9167.9(17)	9045(4)
Ζ	2	4	4
<i>T</i> (K)	200(2)	100(2)	100(2)
Rint	0.0548	0.1746	0.0928
F(000)	5468	5544	5424
ho calcd (g cm ⁻³)	1.826	2.085	2.073
μ (Mo K α) (mm ⁻¹)	6.313	7.126	5.490
Crystal size (mm ³)	0.16×0.16×0.16	0.06×0.03×0.03	0.05×0.04×0.03
Limiting indices	$-20 \le h \le 18$	$-21 \leq h \leq 21$	$-32 \leq h \leq 32$
	$-48 \le k \le 48$	$-24 \le k \le 26$	$-27 \leq k \leq 27$
	$-22 \le l \le 21$	$-34 \le 1 \le 33$	$-39 \le l \le 39$
$R1 (I > 2\sigma(I))^{a}$	0.0576	0.0807	0.0625
wR2 (all data) ^{b)}	0.0809	0.1742	0.1536
GOF	1.021	0.924	0.873
Flack	0.051(4)	-0.017(10)	0.010(5)

 Table S3. Crystallographic data of compounds.

a) $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|.$

b) wR2 = $[\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}$.