SUPPLEMENTARY INFORMATION

Human Vision Inspired Adaptive Platform for One-on-Multiple

Recognition

Zhiyang Zhu, Jianbin Huang, Yun Yan*

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China) Email: yunyan@pku.edu.cn

This material includes:

1. Synthesis of DCM

Scheme S1. Synthetic route for DCM.

DCM was prepared by condensation of aldehyde **3** and 4-dicyanomethylene-2,6-dimethyl-4*H*-pyran in the presence of piperidine, followed by a step of hydrolysis. According to the synthetic route depicted in Scheme S1, typical experimental procedures are given below.

Preparation of 4-((6-bromohexyl)oxy)benzaldehyde (2).

Synthesis of this compound followed the procedure reported in literature ^{s1}. Potassium carbonate (10.4 g), 1,6-dibromohexane (18.3 g), and 4-hydroxybenzaldehyde **1** (6.11 g) were mixed in dry CH₃CN (250 mL) at room temperature. The mixture was then stirred and heated to reflux for 24 h under N₂ atmosphere. After filtration and solvent evaporation, the crude product was purified by silica gel chromatography using petroleum ether (PE)/ethyl acetate (EA) mixture (10:1 by volume) as eluent. After dried in vacuum, product **2** was obtained as a white solid (5.40 g, 38%). Melting point: 41 °C. Elemental analysis: Found: C, 54.8; H, 6.2. Calc. for C₁₃H₁₇BrO₂: C, 54.75; H, 6.0%. FT-IR (anhydrous KBr, cm⁻¹) v: 2950 (C-H), 1688 (CH=O). ¹H NMR (500 MHz, Chloroform-*d*) δ (ppm): 9.88 (s, 1H), 7.85 – 7.80 (m, 2H), 7.01 – 6.97 (m, 2H), 4.05 (t, *J* = 6.4 Hz, 2H), 3.43 (t, *J* = 6.7 Hz, 2H), 1.90 (tt, *J* = 12.5, 6.2 Hz, 2H), 1.83 (dd, *J* = 13.6, 6.7 Hz, 2H), 1.59 – 1.50 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm): 190.81 , 164.13 , 132.01 , 129.83 , 114.73 , 68.13 , 33.75 , 32.62 , 28.90 , 27.87 , 25.24 . ESI-MS m/z: **[2+H]**⁺ Calcd for C₁₃H₁₈BrO₂: 285.0482, found 285.0485.

Preparation of diethyl 4-((6-(4-formylphen-oxy)hexyl)oxy)pyridine-2,6-dicarboxylate (3).

Diethyl 4-hydroxypyridine-2,6-dicarboxylate (**5**) was synthesized according to the procedure previously reported by our group ^{s2}. Potassium carbonate (3.93 g), compound **2** (5.40 g) and compound **5** (4.53 g) were mixed in dry CH₃CN (100 mL) at room temperature. The mixture was then stirred and heated to reflux for 24 h under N₂ atmosphere. After filtration and solvent evaporation, the crude product was purified by silica gel chromatography using PE/EA mixture (3:1-1:1 by volume) as eluent. Product **3** was obtained as a white solid (6.80 g, 81%). Melting point: 104 °C. Elemental analysis: Found: C, 65.1; H, 6.9; N, 3.1. Calc. for C₂₄H₂₉NO₇: C, 65.0; H, 6.6; N, 3.2%. FT-IR (anhydrous KBr, cm⁻¹) v: 2943 (=CH), 1733 (C=O), 1686 (CH=O), 1592 (C=N), 1250 (C-OEt). ¹H NMR (500 MHz, Chloroform-*d*) δ (ppm): 9.88 (s, 1H), 7.83 – 7.81 (m, 2H), 7.77 (s, 2H), 7.00 – 6.97 (m, 2H), 4.46 (qd, *J* = 7.1, 3.9 Hz, 4H), 4.17 – 4.14 (m, 2H), 4.06 (dd, *J* = 10.5, 4.1 Hz, 2H), 1.93 – 1.79 (m, 4H), 1.63 – 1.53 (m, 4H), 1.45 (td, *J* = 7.1, 3.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm): 190.77, 166.93, 164.79, 164.10, 150.15, 131.98, 129.82, 114.71, 114.29, 68.78, 68.11, 62.39, 28.96, 28.68, 25.72, 25.67, 14.20. ESI-MS m/z: [**3**+H]⁺ Calcd for C₂₄H₃₀NO₇: 444.2026, found 444.2017.

Preparation of ethyl ester of **DCM** (4).

A mixture of **3** (6.8 g), 4-dicyanomethylene-2,6-dimethyl-4*H*-pyran (1.29 g), piperidine (1.6 g), and absolute ethanol (75 mL) were refluxed under N_2 for 24 h. After filtration and solvent evaporation, the crude product was purified by silica gel chromatography using

PE/EA mixture (3:2-1:1 by volume) as eluent. Product **4** was obtained as a yellow solid (2.22 g, 29%). Melting point: 158 °C. Elemental analysis: Found: C, 67.9; H, 6.2; N, 5.4. Calc. for $C_{58}H_{62}N_4O_{13}$: C, 68.1; H, 6.1; N, 5.5%. FT-IR (anhydrous KBr, cm⁻¹) v: 2952 (=CH), 2210 (C=N), 1730 (C=O), 1647 (C=C), 1590 (C=N), 1246 (C-OEt). ¹H NMR (500 MHz, DMSO- d_6) δ (ppm): 7.78 (s, 4H), 7.53 (d, J = 8.7 Hz, 4H), 7.48 (d, J = 16.0 Hz, 2H), 6.95 (d, J = 8.7 Hz, 4H), 6.65 (s, 2H), 6.63 (d, J = 16.5 Hz, 2H), 4.47 (q, J = 7.1 Hz, 8H), 4.16 (t, J = 6.3 Hz, 4H), 4.05 (t, J = 6.3 Hz, 4H), 1.95 – 1.80 (m, 8H), 1.59 (s, 8H), 1.46 (t, J = 7.1 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ (ppm): 166.93 , 164.76 , 161.06 , 158.57 , 150.12 , 137.58 , 129.54 , 127.12 , 115.93 , 115.50 , 115.07 , 114.29 , 106.32 , 68.80 , 67.96 , 62.36 , 29.04 , 28.68 , 25.74 , 25.67 , 14.20 . ESI-MS m/z: [4+H]⁺ Calcd for $C_{58}H_{63}N_4O_{13}$: 1023.4365, found 1023.4386.

Preparation of DCM.

To the solution of compound **4** (0.80 g) in 1-1 dichloromethane-methanol mixture (20 mL), sodium hydroxide (0.19 g) and water (1.5 mL) was added. The mixture was then stirred and heated to reflux for 2 h under N₂ atmosphere. After filtration, the crude product was first acidified in water and filtered, then converted to sodium salts in ethanol using sodium hydroxide. The precipitates were collected and dried in vacuum. Such process was repeated for 3 times. The final product **DCM** was obtained as a yellow powder (0.35 g, 45%). Elemental analysis: Found: C, 55.9; H, 4.8; N, 5.1. Calc. for C₅₀H₄₂N₄Na₄O₁₃·4H₂O: C, 56.1; H, 4.7; N, 5.2%. FT-IR (anhydrous KBr, cm⁻¹) v: 2939 (=CH), 2207 (C=N), 1634 (C=O), 1423 (C-O). ¹H NMR (500 MHz, DMSO-*d*₆) δ (ppm): 7.76 (d, *J* = 8.6 Hz, 4H), 7.74 (d, *J* = 16.1 Hz, 2H), 7.67 (s, 4H), 7.24 (d, *J* = 16.1, 2H), 7.03 (d, *J* = 8.6 Hz, 4H), 6.82 (s, 2H), 4.27 (t, *J* = 6.5 Hz, 4H), 4.10 – 4.03 (m, 4H), 1.78 (m, 4H), 1.51 (m, 4H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ (ppm): 160.94 , 150.16 , 130.44 , 128.08 , 117.11 , 115.41 , 113.16 , 106.76 , 69.49 , 68.12 , 61.11 , 28.98 , 28.56 , 25.75 , 25.60 , 25.47. ESI-MS m/z: [**DCM**-H]⁻ Calcd for C₅₀H₄₆N₄O₁₃: 909.2989, found. 909.2938.

2. Optical behaviors of DCM

Figure S1. (a) Fluorescent pictures of DCM solutions in mixed H₂O-EtOH solvent under 365nm UV lamp, water volume fraction (%) are 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 from left to right, [DCM] = 50 μ M. (b) Absorption spectrum of DCM solutions in mixed H₂O-EtOH solvent. (c) Emission spectrum of DCM solutions in mixed H₂O-EtOH solvent. (c) Emission spectrum of DCM solutions in mixed H₂O-EtOH solvent. (c) Emission spectrum of DCM solutions in mixed H₂O-EtOH solvent.

The fluorescence of **DCM** can be regulated by changing solvent polarity. The absorption and emission maximums are both greatly red-shifted when it is dispersed in water or ethanol rich solvents, which indicate the formation of ICT complexes.

3. Binding ratio between DCM and metal ions

Figure S2. Fluorescent pictures of 50 μ M DCM with (a) 0, 25, 50, 75, 100 μ M Zn²⁺ and (b) 0, 50, 100, 150, 200 μ M Ag⁺ in 1-1 water-ethanol mixed solvents under 365nm UV lamp. (c) and (d) are corresponding fluorescent spectrums.

The detemination of molar ratios between **DCM** and metal ions was simply based on fluorescent results. Generally, divalent metal ions, represented by Zn^{2+} , can afford stable fluorescent regulation with the addition of equivalent amount. Ag⁺ need two equivalent to achieve similar results. Therefore, such molar ratios were selected for the following experiments.

4. IR spectrum of some DCM-Metal ions complex

Figure S3. (a) IR spectrums of DCM+ M^{n+} systems that exhibit ICT emission. (b) Detailed spectrums about cyano groups in the fluorophore and carboxyls groups in the head groups.

The cyano groups are possible coordinative sites with metal ions, but their vibrational peaks at around 2200 cm⁻¹ remain unaffected in different systems. In contrast, the C-O vibration peaks of carboxyls groups are changed, indicating a binding of metal ions.

5. Selectivity in the detection of TETA

Figure S4. (a) Emission spectrums of DCM-Zn²⁺ in the presence of various amines. (b) Detection of TETA with co-existence of NH₃, EDA and DETA. [DCM] = $[Zn^{2+}] = 50 \mu$ M, $[NH_3] = [EDA] = [DETA] = [TETA] = 1 m$ M if not mentioned.

Under equivalent concentration, the detection of TETA was barely affected by other amine species or common Zn^{2+} -binding species.

Figure S5: Fluorescent pictures of DCM-Zn²⁺, DCM-Zn²⁺-Cu²⁺, DCM-Cu²⁺ (a) without TETA, (b) with TETA, and (c) corresponding emission spectrum. (d) Ratiometric response of DCM-Zn²⁺ and DCM-Zn²⁺-Cu²⁺ towards TETA.

6. Selectivity in the detection of Cys

100

Figure S6. (a) Emission spectrums of **DCM-Ag**⁺ in the presence of polar amino acids. (b) Detection of Cys with co-existence of Ser, Asp, Lys, His and Met.(c) Ratiometric response of **DCM-Ag**⁺ towards various competing species without (Red bar) or with (Green bar) additional GSH. From left to right: None, GSH, Cys-Cys, Met, Lys, Arg, His, Asp, Asn, Glu, Tyr, BSA (Bovine serum albumin). [DCM] = $[Ag^+]/2 = 50 \mu M$, [Amino acids] = 100 μM if not mentioned.

Under equivalent concentration, the detection of Cys was barely affected by other amino acids. Similar results can be obtained if Cys was replaced with GSH (Figure S5c).

7. Selectivity in the detection of H₂S

Figure S7. (a) Fluorescent pictures of DCM-Pb²⁺ system in the existence of various anions under 365nm UV lamp. From left to right, anions are OH⁻, S²⁻, F⁻, Cl⁻, Br⁻, I⁻, CO₃²⁻, C₂O₄²⁻, SO₄²⁻, PO₄³⁻, CH₃COO⁻. (b) Emission spectrum of DCM-Pb²⁺ system in the existence of various competitors. (c) Detection of H₂S with the co-existence of Cl⁻, I⁻, SO₄²⁻, CO₃²⁻ and HPO₄²⁻. [DCM] = [Pb²⁺] = 50 μ M, [Analytes] = 150 μ M if not mentioned.

Under same concentration, the detection of H_2S was barely affected by common anions and thiols, indicating the good selectivity of DCM-Pb²⁺ towards H_2S .

References:

- S1. H. Zhang, Y. Qu, Y. Gao, J. Hua, J. Li and B. Li, *Tetrahedron Lett.*, 2013, **54**, 909-912.
- S2. L. Zhao, X. Cheng, Y. Ding, Y. Yan and J. B. Huang, *Soft Matter*, 2012, **8**, 10472-10478.