A Simple, Tandem Approach to the Construction of Pyridine Derivatives under Metal-free Conditions: A One-step Synthesis of the Monoterpene
 Natural Product, (-)-Actinidine

Dilipkumar Uredi, Damoder Reddy Motati and E. Blake Watkins*
Department of Pharmaceutical Sciences, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States.

E-mail: bwatkins@uu.edu

Table of Contents

2) Structures of starting materials...S3
3) Experimental procedures and characterization of compounds......................S4-S19
4) References..S19
5) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new starting materials and products.............. S20-S94

EXPERIMENTAL SECTION

General experimental: Glassware was dried in an oven $\left(120^{\circ} \mathrm{C}\right)$, heated under reduced pressure, and cooled under argon before use. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Reactions were monitored by thin-layer chromatography on Analtech silica gel plates using UV-light and ceric sulfate or β-naphthol for visualization. Column chromatography was performed on silica gel (230-400 mesh) using n hexane/ethyl acetate, diethyl ether/hexanes as eluents. Evaporation of solvents was conducted under reduced pressure at $50^{\circ} \mathrm{C}$. FTIR spectra were recorded neat on a Perkin-Elmer Spectrum 65. NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, respectively. Deuterated chloroform was used as the solvent unless otherwise noted, and spectra were calibrated against the residual solvent peak (7.24 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$). Chemical shifts (δ) and coupling constants (J) are given in ppm (parts per million) and Hz (Hertz), respectively. The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{bs}=\mathrm{broad}$ singlet. High Resolution mass spectra were obtained on a VG 70-70H or LC/MSD trapSL spectrometer operating at 70 eV using a direct inlet system.

Figure 1: Structures of aldehyde starting materials (1a-s):

Figure 2: Structures of propargylic amines (2a-j):

Commercially available aldehydes ($\mathbf{1 a - h}$ and $\mathbf{1 k - r}$) and propargylic amines (2a and $\mathbf{2 b}$) were used without further purification. All remaining starting aldehydes $\left(\mathbf{1 i}^{1}\right.$ and $\left.\mathbf{1} \mathbf{j}, \mathbf{1 s}^{\mathbf{2}}\right)$ and propargylic amines ($\mathbf{2 e}, \mathbf{2 h},{ }^{3} \mathbf{2 f},{ }^{4}$ and $\mathbf{2} \mathbf{j}^{5}$) were synthesized according to literature procedures.

General procedure for the synthesis of propargylic amine hydrochloride salts 2c-j:

To a degassed solution of aryl iodide (5.5 mmol) and tert-butyl prop-2-yn-1-yl carbamate (0.77 $\mathrm{g}, 5.0 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{Et}_{3} \mathrm{~N}(0.45 \mathrm{M}, 4: 1)$ under argon, were added $\mathrm{CuI}(38.1 \mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70.2 \mathrm{mg}, 0.10 \mathrm{mmol})$ at room temperature. The mixture was stirred overnight, and an aqueous solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 30 mL). The combined organic layer was washed with brine (50 mL) and dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (gradient, $0 \rightarrow 20 \%$ EtOAc/hexanes) to give the corresponding propargylic amine derivatives in high yield (81-91\%).

To a solution of the coupling product (4.0 mmol) in THF (4 mL) was added 4.0 M HCl in $1,4-$ dioxane solution $(4.0 \mathrm{~mL}, 16 \mathrm{mmol})$ at room temperature, and the reaction mixture was stirred overnight. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ upon completion. The organic layer was removed by decantation, and the precipitate was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The solid compound was dried under vacuum to give the corresponding propargylic amine hydrochloride salts $\mathbf{2 c} \mathbf{c} \mathbf{j}$.

3-(Naphthalen-1-yl)prop-2-yn-1-amine hydrochloride (2c):

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.79(\mathrm{~s}, 3 \mathrm{H}), 8.40(\mathrm{dd}, J=8.1,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=7.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 133.2$, 133.1, 131.1, 130.0, 129.0, 127.7, 127.3, 126.2, 126.0, 119.3, 88.1, 83.9, 29.6.

3-(4-(Trifluoromethyl)phenyl)prop-2-yn-1-amine hydrochloride (2d):

MHz, DMSO- d_{6}): $\delta 132.3,127.7$ (q, $\left.J=373.4 \mathrm{~Hz}\right), 125.8(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.4,122.5,85.7,84.1$, 28.8.

3-(4-Nitrophenyl)prop-2-yn-1-amine hydrochloride (2e):
 $\left.d_{6}\right): \delta 147.3,132.8,128.0,124.1,88.0,83.8,28.9$.

3-(4-Bromophenyl)prop-2-yn-1-amine hydrochloride (2f):

$\left.d_{6}\right): \delta 133.4,132.0,122.7,120.5,84.5,84.2,28.8$.
1-(4-(3-Aminoprop-1-yn-1-yl)phenyl)ethanone hydrochloride (2g):

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.68(\mathrm{bs}, 3 \mathrm{H}), 8.03-7.94(\mathrm{~m}, 2 \mathrm{H})$, 7.64-7.58 (m, 2H), $4.03(\mathrm{~s}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100$ MHz, DMSO- d_{6} : $\delta 197.3,136.7,131.7,128.6,125.8,85.9,84.8$, 28.9, 26.8.

4-(3-Aminoprop-1-yn-1-yl)benzonitrile hydrochloride (2h):

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.67$ (bs, 3H), 7.92 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100$ MHz, DMSO- d_{6}): $\delta 132.8,132.3,126.1,118.3,111.6,87.1,84.1,28.9$.

3-(3-Nitrophenyl)prop-2-yn-1-amine hydrochloride (2i):

$124.0,122.8,85.4,83.3,28.7$.

3-(Thiophen-2-yl)prop-2-yn-1-amine hydrochloride (2j):

 86.5, 78.7, 28.8.

General procedure for the synthesis of substituted pyridines:

To a stirred solution of α, β-unsaturated carbonyl compounds 1a-s $(0.6 \mathrm{mmol})$ and propargylic amine/propargylic amine hydrochloride (0.9 mmol) in DMF (3 mL) were added $4 \AA$ molecular sieves $(200 \mathrm{mg})$ and $\mathrm{NaHCO}_{3}(1.2 \mathrm{mmol}$ for free propargylic amines and 1.8 mmol for propargylic amine hydrochlorides) at room temperature under an argon atmosphere. The reaction mixture was stirred for 3 h at room temperature, followed by 12 h at $80{ }^{\circ} \mathrm{C}$. The mixture was filtered through Celite, washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ was added to the filtrate. The two layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organic layer was washed with ice cold water ($2 \times 15 \mathrm{~mL}$), dried over magnesium sulfate and evaporated
under reduced pressure. The crude product was purified by flash column chromatography on silica gel to afford the corresponding pyridines.

Plausible reaction mechanism:

Based on our preliminary studies and previous reports, a plausible mechanism for construction of pyridine ring was proposed. First, taglic aldehyde 1a condenses with propargylamine 2a to give the stable imine intermediate 3aa, which converts into the allene in the presence of base. The allene intermediate further undergoes 6π-azacyclization followed by aromatization through a $[1,7]-\mathrm{H}$ shift leading to the formation of substituted pyridine $\mathbf{3 a}$.

3,4,5-Collidine (3a): ${ }^{6}$ (CAS NO: 20579-43-5)

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $5: 95$ to 20:80), $60 \mathrm{mg}(83 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.30: 70\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.18(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 147.9,144.2,131.4,16.8,14.9$.

Crotonaldehyde (1b, $42 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol}$) and followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $5: 95$ to $30: 70$), 46 mg (72%) of a pale yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.30: 70\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.0,147.3,145.5,132.1,124.5,19.0,16.3$.

(E)-4-(Hept-1-en-1-yl)-3-methylpyridine (3c):

$(2 E, 4 E)$-Deca-2,4-dienal ($\mathbf{1 c}, 91 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($2 \mathrm{a}, 49.5 \mathrm{mg}, 0.90$
temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 88 mg (78\%) of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/hexanes 30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35-8.33(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{dt}, J=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{ddd}, J=10.4,5.5,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 151.0,147.4,144.1,136.8,129.6,125.2,119.1,33.3,31.3,28.7,22.4,16.4,14.0 ;$ FTIR (neat): 2929, 2856, 1710, 1602, 1384, 1278, 1037, 856, $699 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z} 190(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 190.1590, found: 190.1595 .

3-Methyl-4-phenylpyridine (3d): ${ }^{8}$

trans-Cinnamaldehyde (1d, $80 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine (2a, $49.5 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes 5:95 to 20:80), $90 \mathrm{mg}(89 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.30: 70\right)$;
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.36-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.3$, 149.1, 147.3, 139.0, 130.6, 128.5, 128.4, 127.9, 124.0, 17.2.

4-(4-Methoxyphenyl)-3-methylpyridine (3e): ${ }^{9}$

OMe trans-p-Methoxycinnamaldehyde ($\mathbf{1 e}, 97 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine (2a, 49.5 $\mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), $107 \mathrm{mg}(90 \%)$ of a pale, yellow solid was obtained. R_{f} $=0.5(\mathrm{EtOAc} /$ hexanes $30: 70), \mathrm{mp}=112-114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.44$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.3,151.2,148.6,147.3,131.2,130.5,129.7$, 123.9, 113.7, 55.2, 17.3.

3-Methyl-4-(4-nitrophenyl)pyridine (3f):

4-Nitrocinnamaldehyde (1f, $106 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to $25: 75$), $106 \mathrm{mg}(83 \%)$ of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/hexanes 30:70), $\mathrm{mp}=139-141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.31(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.5,147.6,146.9,145.5,130.2,129.6,123.8,123.8,123.1$, 17.1; FTIR (neat): 2928, 1590, 1512, 1344, 1106, 994, 855, 735, $697 \mathrm{~cm}^{-1}$; MS (ESI): m/z 215 $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 215.0815$, found: 215.0818. 4-(4-Chlorophenyl)-3-methylpyridine (3g): ${ }^{10}$

4-Chlorocinnamaldehyde ($\mathbf{1 g}, 100 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine (2a, $49.5 \mathrm{mg}, 0.90$ $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to $20: 80$), $111 \mathrm{mg}(93 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/hexanes 30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47-7.40(m, 2H), 7.30-7.23(m, 2H), 7.12 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.3,147.8,147.4,137.3,134.0,130.4,129.8,128.6,123.7,17.1$.

4-(Furan-2-yl)-3-methylpyridine (3h):

(E)-3-(Furan-2-yl)acrylaldehyde ($\mathbf{1 h}, 73 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}$, $0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF $(3 \mathrm{~mL})$ were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 25:75), 83 mg (87%) of a pale, yellow semi solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/hexanes 30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=3.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}$, 1H), $2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,150.9,147.5,143.3,136.6,128.1$, 119.4, 112.0, 111.9, 19.0; FTIR (neat): 2921, 1619, 1445, 1330, 1268, 1159, 1024, 980, 882, 791, $741 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 160(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 160.0757$, found: 160.0756.

1-Methyl-2-(3-methylpyridin-4-yl)-1H-indole (3i):

(E)-3-(1-Methyl-1H-indol-2-yl)acrylaldehyde (1i, $111 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 30:70), $114 \mathrm{mg}(86 \%)$ of a yellow
semisolid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4(\mathrm{EtOAc} /$ hexanes $30: 70) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.59(\mathrm{~s}$, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{ddd}, J=7.0,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51$ $(\mathrm{d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.3,147.1$, 140.2, 137.7, 137.2, 132.8, 127.7, 125.0, 122.1, 120.7, 120.0, 109.6, 102.6, 30.6, 17.0; FTIR (neat): 2976, 1576, 1495, 1400, 1254, 1145, 892, 757, $698 \mathrm{~cm}^{-1}$; MS (ESI): m/z $223(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}: 223.1230$, found: 223.1233.

3-Methyl-5-(6-methylhept-5-en-2-yl)pyridine (3j):

3,7-Dimethyl-2-methyleneoct-6-enal (1j, $100 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine (2a, $49.5 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20$ mmol) in DMF (3 mL) were stirred for 12 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to $20: 80$), $98 \mathrm{mg}(81 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{EtOAc} /$ hexanes $30: 70) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.23$ $(\mathrm{s}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.67$ $(\mathrm{s}, 3 \mathrm{H}), 1.61(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 147.8,146.3,142.0,134.8,132.7,131.8,124.0,38.0,36.7,26.0,25.7,22.1,18.4,17.6 ;$ FTIR (neat): 2961, 1682, 1577, 1438, 1376, 1147, 1028, 983, 873, $719 \mathrm{~cm}^{-1} ;$ MS (ESI): m/z 204 $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 204.1747$, found: 204.1741.

2,6-Dimethyl-1,1'-biphenyl (3k): ${ }^{11}$

 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to $20: 80$), 90 mg (83%) of a white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$
(EtOAc/hexanes 30:70), $\mathrm{mp}=106-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.35(\mathrm{~s}, 2 \mathrm{H}), 7.50-7.43$ (m, 2H), 7.42-7.35(m, 1H), 7.15-7.08 (m, 2H), $2.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $149.3,148.3,138.0,130.8,128.7,127.9,127.5,17.3$.

3-Methyl-5-pentyl-4-phenylpyridine (31):

(E)-alpha-Amyl cinnamaldehyde (Jasmonal A, 11, $121 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 25:75), 129 mg (91\%) of a colorless liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.3(\mathrm{EtOAc} /$ hexanes $30: 70) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 8.33$ $(\mathrm{s}, 1 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H})$, 1.20-1.08 (m, 4H), $0.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.9,148.1$, 148.0, 137.7, 135.4, 130.9, 128.4, 128.2, 127.4, 31.4, 30.5, 30.5, 22.1, 17.4, 13.8; FTIR (neat): 2955, 1582, 1464, 1380, 1158, 1041, 885, 758, $702 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 240(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 240.1747$, found: 240.1749 .

4-Methyl-5,6,7,8-tetrahydroisoquinoline (3m):

1-Cyclohexene-1-carboxaldehyde ($\mathbf{1 m}, 66 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}$, $49.5 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $5: 95$ to $20: 80$), $76 \mathrm{mg}(87 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $30: 70$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 148.1,147.0,144.5,132.2,131.4,26.6,26.0,22.5,22.3,15.9 ;$ FTIR (neat): 2929, 1680,

1588, 1449, 1421, 1192, 1141, 909, 800, $718 \mathrm{~cm}^{-1} ;$ MS (ESI): $\mathrm{m} / \mathrm{z} 148(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 148.1121 , found: 148.1125 .

3-Benzyl-4,5-dimethylpyridine (3n):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-phenylprop-2-yn-1-amine hydrochloride (2b, $150 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 93 mg (79\%) of a pale, yellow semi solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4\left(\right.$ EtOAc/hexanes 30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=8.1,2.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 2.24$ (s, 3H), $2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.7,148.7,144.6,139.5,133.8,132.2$, 128.5, 128.4, 126.2, 36.9, 16.9, 15.1; FTIR (neat): 2925, 1669, 1598, 1491, 1385, 1197, 1125, 797, 757, $695 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 198(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 198.1277, found: 198.1280.

3,4-Dimethyl-5-(naphthalen-1-ylmethyl)pyridine (3o):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}), 3$-(naphthalen-1-yl)prop-2-yn-1amine hydrochloride ($\mathbf{2 c}, 195 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80$ mmol) in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 127 mg (86%) of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5$ (EtOAc/hexanes 30:70), $\mathrm{mp}=121-123{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.74$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}$, 2H), 2.29 (s, 3H), 2.14 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.9,148.8,144.7,135.1$, $133.7,133.2,132.0,131.9,128.8,127.1,126.2,125.8,125.7,125.5,123.3,33.6,17.0,15.0 ;$ FTIR
(neat): 2917, 1597, 1440, 1399, 1186, 1074, 887, 793, 774, $757 \mathrm{~cm}^{-1}$; MS (ESI): m/z $248(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 248.1434$, found: 248.1437 .

3,4-Dimethyl-5-(4-(trifluoromethyl)benzyl)pyridine (3p):

Tiglic aldehyde (1a, $50 \quad \mathrm{mg}, \quad 0.60 \quad \mathrm{mmol}), \quad 3-(4-$
(trifluoromethyl)phenyl)prop-2-yn-1-amine hydrochloride (2d, 211 mg , $0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 145 mg (93%) of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes $30: 70), \mathrm{mp}=127-129{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.1,148.7$, $144.5,143.7,132.9,132.4,128.7,128.6(\mathrm{q}, J=32.4 \mathrm{~Hz}), 125.4(\mathrm{q}, J=3.9 \mathrm{~Hz}), 124.1(\mathrm{q}, J=271.9$ Hz), 36.7, 16.9, 15.1; FTIR (neat): 2925, 1618, 1416, 1321, 1160, 1107, 1065, 1017, 815, $726 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI): $m / z 266(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 266.1151, found: 266.1154.

3,4-Dimethyl-5-(4-nitrobenzyl)pyridine (3q):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-(4-nitrophenyl)prop-2-yn-1-amine hydrochloride ($\mathbf{2 e}, 190.8 \mathrm{mg}, 0.90 \mathrm{mmol}$) and NaHCO_{3} (151 $\mathrm{mg}, 1.80 \mathrm{mmol}$) in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at 80 ${ }^{\circ}$ C. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 126 mg (87%) of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.6($ EtOAc/hexanes $30: 70), \mathrm{mp}=163-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}$, 2H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5,148.7,147.3,146.6$, $144.5,132.6,132.3,129.1,123.8,36.8,16.9,15.2$, FTIR (neat): 2923, 1594, 1440, 1340, 1105,

930, 834, 733, $698 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 243(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 243.1128$, found: 243.1132.

3-(4-Bromobenzyl)-4,5-dimethylpyridine (3r):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-(4-bromophenyl)prop-2-yn-1amine hydrochloride ($\mathbf{2 f}, 219 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}$, 1.80 mmol) in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 146 mg (88%) of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5($ EtOAc/hexanes $30: 70), \mathrm{mp}=127-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}$, 2H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.0,148.7,144.4,138.5$, 133.2, 132.3, 131.5, 130.1, 120.0, 36.3, 16.9, 15.1; FTIR (neat): 2920, 1585, 1485, 1414, 1072, 1012, 897, 793, $746 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 276(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrN}$ $(\mathrm{M}+\mathrm{H})^{+}: 276.0382$, found: 276.0385 .

1-(4-((4,5-Dimethylpyridin-3-yl)methyl)phenyl)ethanone (3s):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol})$, 1-(4-(3-aminoprop-1-yn-1yl)phenyl)ethanone hydrochloride ($2 \mathbf{g}, 188 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80) 120 mg (84%) of a pale yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes $30: 70), \mathrm{mp}=122-124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.05(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 197.6$, 149.1, 148.7, 145.2, 144.5, 135.3, 133.0, 132.4, 128.6, 128.5, 36.9, 26.5, 16.9, 15.1; FTIR (neat):

2919, 1677, 1606, 1412, 1356, 1269, 1018, 958, 895, $749 \mathrm{~cm}^{-1} ;$ MS (ESI): m/z $240(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}: 240.1383$, found: 240.1386 .

4-((4,5-Dimethylpyridin-3-yl)methyl)benzonitrile (3t):

Tiglic aldehyde ($\mathbf{1 a}, 50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 4-(3-aminoprop-1-yn-1yl)benzonitrile hydrochloride ($\mathbf{2 h}, 172.8 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151$ $\mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (gradient: EtOAc/hexanes 5:95 to 20:80) $120 \mathrm{mg}(90 \%)$ of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes $30: 70), \mathrm{mp}=145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.30(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=8.0,0.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 2.08 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ 149.3, 148.7, 145.2, 144.4, 132.5, 132.3, 132.3, 129.1, 118.7, 110.2, 36.9, 16.9, 15.1; FTIR (neat): 2945, 2224, 1584, 1500, 1412, 1172, 995, 892, 812, $755 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 223(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}$223.1230, found: 223.1234.

3,4-Dimethyl-5-(3-nitrobenzyl)pyridine (3u):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-(3-nitrophenyl)prop-2-yn-1amine hydrochloride ($\mathbf{2} \mathbf{i}, 190.8 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80$ $\mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), $132 \mathrm{mg}(91 \%)$ of a pale, yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.6(\mathrm{EtOAc} /$ hexanes $30: 70), \mathrm{mp}=170-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.30(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $7.45(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5$, 148.7, 148.4, 144.3, 141.7, 134.5, 132.5, 132.3, 129.4, 123.2, 121.5, 36.5, 16.9, 15.2; FTIR (neat): 2921, 1530, 1438, 1384, 1093, 996, 928, 804, 726, $691 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 243(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 243.1128$, found: 243.1129 .

3,4-Dimethyl-5-(thiophen-2-ylmethyl)pyridine (3v):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-(thiophen-2-yl)prop-2-yn-1-amine hydrochloride ($\mathbf{2} \mathbf{j}, 155.7 \mathrm{mg}, 0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes $5: 95$ to $20: 80$) $102 \mathrm{mg}(84 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} / \mathrm{hexanes} 30: 70) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}$, $1 \mathrm{H}), 7.13(\mathrm{dd}, J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.64(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.0,148.3,144.3,142.8,133.6$, $132.3,126.8,124.9,123.8,31.3,16.9,14.9$; FTIR (neat): 2919, 1586, 1437, 1286, 1230, 1108, 1017, 886, 821, $694 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 204(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NOS}$ $(\mathrm{M}+\mathrm{H})^{+}: 204.0841$, found: 204.0843 .

3-Benzyl-4-phenylpyridine (3w):

trans-Cinnamaldehyde ($\mathbf{1 d}, 80 \mathrm{mg}, 0.60 \mathrm{mmol}$), 3-phenylprop-2-yn-1-amine hydrochloride (2b, $150 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(151 \mathrm{mg}, 1.80 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 30:70), 117 mg (80%) of a pale, yellow semi-solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.5(\mathrm{EtOAc} /$ hexanes $30: 70) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.63-8.25(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.35(m, 3H), 7.23-7.13(m, 6H), 6.96-6.89 (m, 2H), $3.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 151.6,149.7,147.6,140.1,138.7,133.6,128.6,128.5,128.4,128.3,128.0,126.1,124.5$, 36.3; FTIR (neat): 3057, 1668, 1588, 1493, 1407, 1179, 838, 752, $695 \mathrm{~cm}^{-1}$; MS (ESI): m/z 246 $(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 246.1277$, found: 246.1279.

2,3,4,5-Tetramethylpyridine (3x): ${ }^{\mathbf{1 2}}$

(E)-3-Methylpent-3-en-2-one (1n, $59 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2} \mathbf{a}, 49.5 \mathrm{mg}$, 0.90 mmol) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes 5:95 to $20: 80), 59 \mathrm{mg}(73 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.30: 70\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.0,146.3,143.9,129.4,129.3,23.2,17.1,15.4,15.1$.

2,5-Dimethyl-4-phenylpyridine (3y): ${ }^{13}$

4-Phenyl-3-buten-2-one (10, $88 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90$ mmol) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to 20:80), 82 mg (75%) of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.4$ (EtOAc/hexanes 30:70); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 155.6,150.4$, $149.5,139.2,128.4,128.3,127.7,127.4,123.5,23.7,16.7$.

1,4-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine (3z):

1-Acetylcyclopentene ($\mathbf{1 p}, 66 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90$ mmol) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80{ }^{\circ} \mathrm{C}$. After column chromatography $\left(E t_{2} \mathrm{O} /\right.$ hexanes $5: 95$ to $\left.20: 80\right) 130 \mathrm{mg}(70 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.3$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $30: 70$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.43(\mathrm{~s}$, 3H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 152.2,151.1,146.8$, 137.2, 126.8, 31.4, 30.9, 23.8, 21.7, 15.9; FTIR (neat): 2920, 1669, 1596, 1434, 1312, 1045, 926,

906, $722 \mathrm{~cm}^{-1}$; MS (ESI): m/z $148(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$: 148.1121, found: 148.1125.

(Z)-N-((E)-2-methylbut-2-en-1-ylidene)prop-2-yn-1-amine (3aa):

Tiglic aldehyde (1a, $50 \mathrm{mg}, 0.60 \mathrm{mmol})$ and propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol}$) in DMF (3 mL) were stirred for 36 h at room temperature. After column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $5: 95$ to $\left.10: 80\right), 62 \mathrm{mg}(85 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.6\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.20: 70\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.08(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26-5.86$ $(\mathrm{m}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=2.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.0,137.5,136.5,79.6,74.6,46.7,14.2,11.1$; FTIR (neat): 3010, 2919, 1630, 1423, 1298, 1125, 1013, 978, 847, $726 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 122(\mathrm{M}+\mathrm{H})^{+}$. (S)-4-Methyl-6-(prop-1-en-2-yl)-5,6,7,8-tetrahydroisoquinoline (4a):

(S)-(-)-Perillaldehyde (1q, $90 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}$, $0.90 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes $5: 95$ to $30: 70$), 95 mg (85%) of a brown liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.2$ (EtOAc/hexanes 30:70); $[\alpha]^{25} \mathrm{D}=-37.8\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}$, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 4.83-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.76(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.32(\mathrm{~m}, 2 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 148.8,147.9,147.2,144.1,131.5,131.3,109.6,41.1,31.5,27.1,26.6,20.6,16.0 ;$ FTIR (neat): 2923, 1644, 1586, 1435, 1376, 1149, 1034, 886, $720 \mathrm{~cm}^{-1}$; MS (ESI): $\mathrm{m} / \mathrm{z} 188(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 188.1434$, found: 188.1436 .
(6R, $8 R$)-4,7,7-Trimethyl-5,6,7,8-tetrahydro-6,8-methanoisoquinoline (4b):

(1R)-(-)-Myrtenal (1r, $90 \mathrm{mg}, 0.60 \mathrm{mmol}$), propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90$ mmol) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography (EtOAc/hexanes 5:95 to $30: 70), 91 \mathrm{mg}(81 \%)$ of a brown liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.2(\mathrm{EtOAc} /$ hexanes $30: 70) ;[\alpha]_{\mathrm{D}}{ }^{25}-$ 34.7 (c 1.12, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 3 \mathrm{H})$, $2.66(\mathrm{dt}, J=9.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dq}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.5,143.8,142.4,141.5,131.0$, 44.4, 39.9, 38.7, 31.6, 31.3, 25.8, 21.2, 15.2; FTIR (neat): 2921, 1588, 1472, 1424, 1289, 1221, 1132, 955, 844, 792, $735 \mathrm{~cm}^{-1}$; MS (ESI): $m / z 188(\mathrm{M}+\mathrm{H})^{+} ;$HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}$ $(\mathrm{M}+\mathrm{H})^{+}: 188.1434$, found: 188.1437.

(R)-4,7-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine ((-)-actinidine) (5): ${ }^{14}$

(R)-5-Methylcyclopent-1-enecarbaldehyde $\quad(\mathbf{1 s}, \quad 66 \mathrm{mg}, \quad 0.60 \mathrm{mmol})$, propargylamine ($\mathbf{2 a}, 49.5 \mathrm{mg}, 0.90 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(101 \mathrm{mg}, 1.20 \mathrm{mmol})$ in DMF (3 mL) were stirred for 3 h at room temperature followed by 12 h at $80^{\circ} \mathrm{C}$. After column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $05: 95$ to $20: 80$), $73 \mathrm{mg}(85 \%)$ of a pale, yellow liquid was obtained. $\mathrm{R}_{\mathrm{f}}=0.3\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $\left.30: 70\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-14.6\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 3.34-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=16.7,8.8,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.73(\mathrm{dt}, J=16.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddd}, J=16.7,12.7,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,147.7,143.6,142.5$, 129.1, 37.9, 33.8, 29.7, 20.0, 16.0;

References:

1. T.-T. Wang, L. Zhao, Y.-J. Zhang and W.-W. Liao, Org Lett, 2016, 18, 5002-5005.
2. L. Candish and D. W. Lupton, Org Biomol Chem, 2011, 9, 8182-8189.
3. (a) J. Jouha, F. Buttard, M. Lorion, C. Berthonneau, M. Khouili, M.-A. Hiebel, G. Guillaumet, J.-F. Brière and F. Suzenet, Org Lett, 2017, 19, 4770-4773; (b) Q. Wang, S.
E. Motika, N. G. Akhmedov, J. L. Petersen and X. Shi, Angew Chem Int Ed Engl, 2014, 53, 5418-5422.
4. X. Zhou, Z. Jiang, L. Xue, P. Lu and Y. Wang, E J Org Chem, 2015, 2015, 5789-5797.
5. S. Sakthivel, A. Sharma and R. Balamurugan, E J Org Chem, 2017, 2017, 3941-3946.
6. Y. Fukumoto, M. Hirano and N. Chatani, ACS Catalysis, 2017, 7, 3152-3156.
7. M. Boruah and D. Konwar, Synlett, 2001, 2001, 0795-0796.
8. S. Chiba, Y.-J. Xu and Y.-F. Wang, J Am Chem Soc, 2009, 131, 12886-12887.
9. D. Xue, Z.-H. Jia, C.-J. Zhao, Y.-Y. Zhang, C. Wang and J. Xiao, Chem Eur J, 2014, 20, 2960-2965.
10. M.-J. Shiao, C.-J. Peng, J.-S. Wang and Y.-T. Ma, J Chin Chem Soc, 1992, 39, 173-176.
11. C. Siv, G. Vernin and J. Metzger, Helv Chim Acta, 1979, 62, 1570-1585.
12. D. A. Colby, R. G. Bergman and J. A. Ellman, J Am Chem Soc, 2008, 130, 3645-3651.
13. H. Wei, Y. Li, K. Xiao, B. Cheng, H. Wang, L. Hu and H. Zhai, Org Lett, 2015, 17, 5974-5977.
14. J. S. Beckett, J. D. Beckett and J. E. Hofferberth, Org Lett, 2010, 12, 1408-1411.
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}\left(\right.$ DMSO $\left.-d_{6}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{2 c}\left(\right.$ DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right)$:

$\begin{array}{cc}\circ & \infty \\ \infty \\ \infty \\ \mid & \infty \\ \mid & 1\end{array}$
$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\stackrel{-1}{1}}$

㧒

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}$ (DMSO- $d_{6}, 400 \mathrm{MHz}$):

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of 2d (DMSO- $d_{6}, 100 \mathrm{MHz}$):

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}\left(\right.$ DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{2 e}\left(\right.$ DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right):$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 f}\left(\right.$ DMSO- $\left._{6}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{2 f}$ (DMSO- $d_{6}, 100 \mathrm{MHz}$):

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}$ (DMSO- $d_{6}, 400 \mathrm{MHz}$):

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{2 g}$ (DMSO- $d_{6}, 100 \mathrm{MHz}$):

$\stackrel{\circ}{\infty}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}\left(\right.$ DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{2 h}\left(\right.$ DMSO- $d_{6}, 100 \mathrm{MHz}$):

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}$ (DMSO- $d_{6}, 400 \mathrm{MHz}$):

太
 |

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{2 i}$ (DMSO- $d_{6}, 100 \mathrm{MHz}$):

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

-16.81
-14.91

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

	$\stackrel{\sim}{\sim}$
\downarrow +	\|

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

$\stackrel{\check{\infty}}{\stackrel{\infty}{\infty}}$
$\stackrel{\stackrel{\text { Ning }}{1}}{ }$
\circ
\dot{i}
i

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:
$\underbrace{\text { ®. }}$
$\underbrace{\left.\infty^{\infty}\right)^{\infty} \underbrace{\infty} \underbrace{\infty}} \underbrace{n} \overbrace{}^{n}$
${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\sim}{0}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right):$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{3 1}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

-

8
i

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of compound $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 s}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 t}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 u}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of compound $\mathbf{3 u}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 v}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 v}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 w}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$


```
ソ
```


${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3 w}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 x}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 x}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 y}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 y}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 z}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{3 z}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

	N
ヘัก ำ	$\stackrel{\text { m }}{ }$
111	

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3} \mathbf{a a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{3 a a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:
$\stackrel{\text { बे }}{\stackrel{\circ}{\circ}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right):$

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$:

${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum of compound $5\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$:

