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Experimental Procedures

General. Starting materials were commercially available and were used without purification. All solvents for
reactions and spectral measurement were purified by conventional methods before use. The NMR spectra were
recorded at 25 °C on a Bruker Avance 400 spectrometer, and the chemical shift are reported as parts per million
from TMS (). Coupling constants J are given in Hertz. Elemental analyses were performed with a Perkin Elmer
240C elemental analyzer, three times averaged. Mass spectra were determined with the ESI mass spectra
which were recorded on the Waters Xevo G2-XS QTof matrix-assisted time of flight mass spectrometer. The
single crystal data was recorded with a Bruker SMART APEX-II CCD detector using graphite monochromated
Cu-Ka radiation. Chiral HPLC was performed on an Agilent Technologies 1200 infinity system equipped Daicel
CHIRALPAK IA columns (250*4.6 mm). UV-vis absorption spectra and circular dichroism (CD) spectra were
measured on a Chirascan from Applied Photophysics. The g factor geo is the ratio of molar CD to molar extinction
coefficient (for unpolarized ligh), gco = Ag(A)e(A) 1, where Ag(\) is the molar circular dichroism, Ag(A) = eL(A)-
er(A); €(A) = 1/2*[eL(N)+er(N)].

Computational Section. All the quantum chemical computations have been carried out with Gaussian 03
software (Gaussian, Inc., Pittsburgh, PA, 2003). The conformational search was performed by Spartan’s 14
using Merk Molecular Force Field (MMFF) level. The low energy conformations (Boltzmann distribution =
5.0 %) of compounds were submitted to the density functional theory (DFT) optimization at the level of b3lyp/6-
31g(d,p), using the pcm solvation model with the dielectric constant representing H20. The optimized structures
were subject to the frequency calculations at b3lyp/6-31g(d,p) level to confirm the true energy minimal located
and generate the thermodynamic data. The optimized structures were further submitted to the Time-dependent
density functional theory (TDDFT) calculations at b3lyp/6-31g(d,p). CD values were read and Boltzman
averaged using the SpecDis 1.53.
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Scheme S1. The synthetic routes of intermediates and target products.

Synthesis of 1. Bromoethane (4.9037 g, 45 mmol) and 3-bromophenothiazine (8.3450 g, 30 mmol) was
dissolved in DMSO (150 mL) under N2 atmosphere, and then KOH (4.9708 g, 89 mmol) was added slowly. The
mixed solution was stirred overnight under room temperature. The mixture was diluted with deionized water
(200 mL), and then extracted with ethyl acetate (3 x 150 mL). The organic phase was dried with MgSO4 and

concentrated. The crude was purified via column chromatography on silica gel. The product is white solid, with
yield 9.0000 g, 98%."H NMR (400 MHz, Acetone-ds) & 7.34 (dd, J = 8.7, 2.3 Hz, 1H), 7.28 (d, J = 2.3 Hz, 1H),
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7.23 (ddd, J =8.2, 7.3, 1.6 Hz, 1H), 7.15 (dd, J = 7.6, 1.5 Hz, 1H), 7.04 (dd, J = 8.3, 1.1 Hz, 1H), 6.97 (td, J =
7.6, 1.3 Hz, 2H), 3.99 (q, J = 6.9 Hz, 2H), 1.38 (t, J = 6.9 Hz, 3H); 3C NMR (101 MHz, DMSO) & 144.45, 144.28,
130.54, 129.28, 128.34, 127.59, 126.05, 123.17, 122.65, 117.50, 116.11, 114.07, 41.65, 12.96..

Synthesis of 2. Triphenylphosphine (0.0472 g, 0.18 mmol) was dissolved in THF/EtsN (v/v=15mL /15 mL),
and the solution was degassed with nitrogen for 0.5 h. The reactant and catalyst were added sequentially,
trimethylsilylacetylene (0.8 mL, 5.30 mmol), 1 (0.5420 g, 1.77 mmol), Cul (0.0202 g, 0.11 mmol), PdCI>(PPhs)2
(0.0746 g, 0.11 mmol). The mixed suspension was reacted under 60°C for 1 day. The yellow solution turned
dark red gradually. When the reaction finished, the mixture was filtrated. Concentrated the solution, and the
obtained residual was purified via column chromatography on silica gel (Hexane/Ethyl acetate=15/1). The
product was yellow solid, with yield 0.3890 g, 68%. 'H NMR (400 MHz, Acetone-ds) & 7.05 (dd, J = 8.5, 2.0 Hz,
1H), 6.99 (td, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 7.6, 1.5 Hz, 1H), 6.80 (dd, J = 8.3, 1.1 Hz, 1H), 6.77 —
6.70 (m, 2H), 3.69 (q, J = 6.9 Hz, 2H), 1.07 (t, J = 6.9 Hz, 3H), 0.00 (s, 9H); *C NMR (101 MHz, DMSO) &
144.36, 142.98, 130.83, 129.04, 127.33, 126.59, 122.53, 122.37, 121.60, 115.28, 115.19, 114.73, 104.15, 93.26,
40.78, 12.00, -0.50.

Synthesis of 3. 2 (0.3230 g, 1.00 mmol) and K2COs (0.4150 g, 3.00 mmol) were added into methanol (100
mL), and the mixture was stirred under room temperature overnight. Reduce the reaction solution in vacuo and
then dissolve in ethyl acetate, followed by washing with brine. The organic layer was collected and concentrated
in vacuo. The crude residual was purified using silical gel chromatography (Hexane/Ethyl acetate=15/1). The
product was yellow solid, with yield 0.2130 g, 85%. 'H NMR (400 MHz, DMSO-ds) & 7.31 (dd, J = 8.4, 2.0 Hz,
1H), 7.25-7.20 (m, 2H), 7.15 (dd, J = 7.6, 1.6 Hz, 1H), 7.05 (dd, J = 8.3, 1.1 Hz, 1H), 7.01 - 6.95 (m, 2H), 4.18
—4.09 (s, 1H), 3.93 (g, J = 6.9 Hz, 2H), 1.31 (t, J = 6.9 Hz, 3H). *C NMR (101 MHz, DMSO) & 145.31, 144.06,
131.82, 130.13, 128.31, 127.56, 123.56, 123.31, 122.57, 116.15, 115.83, 115.79, 83.29, 80.96, 41.70, 12.97.

Synthesis of 4. 4 was synthesized by literature procedures.?! '"H NMR (400 MHz, Chloroform-d) & 7.82
(dt, J=5.7, 2.9 Hz, 1H), 7.35 (td, 1H), 7.09 (dd, J = 8.1, 1.5 Hz, 1H), 6.97 (td, J= 7.8, 1.5 Hz, 1H), 2.36 (s, 3H).

Synthesis of 5. 5 was obtained by the reaction between 3 and 4 via procedure similar with 2. The product
is yellow powder, with yield of 52 %. 'H NMR (400 MHz, DMSO-de) & 7.59 (dd, J = 7.7, 1.7 Hz, 1H), 7.50 — 7.40
(td, J=7.4,1.1 Hz, 1H), 7.38 — 7.27 (m, 2H), 7.28 — 7.17 (m, 3H), 7.14 (dd, J = 7.6, 1.5 Hz, 1H), 7.07 — 6.99 (m,
2H), 6.96 (id, J = 7.4, 1.1 Hz, 1H), 3.93 (g, J = 6.9 Hz, 2H), 2.36 (s, 3H), 1.30 (t, J = 6.9 Hz, 3H). 3C NMR (101
MHz, DMSO) & 169.09, 151.57, 145.43, 143.95, 132.90, 131.60, 130.31, 129.66, 128.33, 127.58, 126.72,
123.70, 123.39, 123.17, 122.50, 117.29, 116.17, 115.92, 93.89, 84.68, 41.78, 21.04, 12.97. Q-TOF m/z: calcd,
385.1136; found, 386.1312 [M+H]*.

Synthesis of 6. 5 (0.8866 g, 2.30 mmol) was mixed with tetracyanoethylene (0.3540 g, 2.70 mmol) in
acetonitrile (30 mL) while stirring. The mixture was reacted for 6 h under 60°C. The dark brown reaction mixture
was concentrated in vacuum, and the residual was purified using flash silical gel chromatography (Hexane/Ethyl
acetate=1/1). The product is black powder, with yield 1.0631 g, 90%. 'H NMR (400 MHz, DMSO-ds) & 7.95 (d,
J=8.0Hz, 1H), 7.75 - 7.64 (m, 2H), 7.59 (s, 1H), 7.47 (t, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.23 (t, J = 7.7 Hz, 1H),
7.17 = 7.06 (m, 3H), 7.02 (t, J = 7.5 Hz, 1H), 3.98 (q, J = 6.9 Hz, 2H), 2.32 (s, 3H), 1.29 (t, J = 6.9 Hz, 3H). °C
NMR (101 MHz, DMSO) & 168.67, 163.80, 162.30, 148.45, 141.91, 135.21, 132.22, 131.65, 128.68, 127.67,
126.92, 124.80, 124.61, 123.27, 121.41, 116.87, 115.58, 113.74, 113.04, 112.40, 112.08, 95.12, 83.10, 42.44,
21.52,12.76. Q-TOF m/z: calcd, 513.1259; found, 514.1324 [M+H]*.

Synthesis of 7. 6 (0.1284 g, 0.25 mmol) was dissolved in dimethyl sulfoxide (10 mL), and then added
Cs2C03 (0.1642 g, 0.50 mmol). The mixture was stirred for 3 h under room temperature. The reaction mixture
was dilluted in water and extracted 3 times with dichloromethane. The organic layer was concentrated, and the
obtained crude residual was purified using flash silical gel chromatography (Hexane/Ethyl acetate=5/1). The
product is red powder, with yield 0.0719 g, 45%. "H NMR (400 MHz, DMSO-ds) 5 8.08 — 8.01 (d, 1H), 7.79 (ddd,
J=8.5,7.1,1.3Hz 1H), 7.27 - 7.14 (m, 5H), 7.12 (dd, J = 7.7, 1.5 Hz, 1H), 7.04 — 6.96 (m, 3H), 6.94 (t, J = 7.2
Hz, 1H), 3.89 (q, J = 6.8 Hz, 2H), 1.28 (t, J = 6.9 Hz, 3H). '*C NMR (101 MHz, DMSO) & 174.71, 173.36, 166.64,
145.40, 144.11, 140.01, 130.35, 128.24, 127.81, 127.55, 127.36, 126.55, 126.22, 125.95, 123.13, 122.86,
122.71,122.67, 120.05, 115.99, 115.43, 114.55, 113.42, 112.70, 104.98, 71.65, 41.59, 12.98. Q-TOF m/z: calcd,
471.1154; found, 472.0623 [M+H]".

Synthesis of P (method 1). 7 (0.1178 g, 0.25 mmol) was dissolved in methanol (15 mL), and then added
Cs2C0s3 (0.1642 g, 0.50 mmol). The reddish-brown solution turns to yellow. The mixture was stirred under room
temperature for 3 h. The reaction mixture was concentrated in vacuum, and dispersed in dichloromethane,
followed by washing 3 times with brine. The organic layer was concentrated, and the obtained crude residual
was purified using flash silical gel chromatography (Dichloromethane). The product is red powder, with yield
0.1195 g, 95%."H NMR (400 MHz, DMSO-ds) & 7.46 — 7.41 (m, 3H), 7.38 (ddd, J = 8.6, 7.2, 1.7 Hz, 1H), 7.26
(d, J=2.3Hz, 1H), 7.24 - 7.17 (m, 2H), 7.13 - 7.01 (m, 4H), 6.96 (qd, J = 7.7, 1.3 Hz, 2H), 3.95 - 3.87 (m, 5H),
1.26 (t, J = 6.9 Hz, 3H). '*C NMR (101 MHz, DMSO) & 176.60, 165.47, 161.00, 148.31, 147.73, 142.68, 130.75,
128.58, 128.49, 127.62, 127.24, 125.88, 125.77, 123.96, 123.42, 122.65, 121.37, 118.80, 117.91, 117.24,
116.39, 115.69, 114.30, 100.15, 74.26, 56.74, 54.72, 41.98, 12.80. Anal. Calcd for C20H21Ns02S (503.58): C,
69.17%; H, 4.20%; N, 13.91%; found: C, 69.20%; H, 4.19%; N, 13.93%. Q-TOF m/z: calcd, 503.1416; found,
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504.1614 [M+H]". Synthesis of P (method 2). P was obtained directly by mixing 5 (0.1386 g, 0.36 mmol),
tetracyanoethylene (0.0550 g, 0.43 mmol), THF (15 mL, or DMSO 10 mL), cesium carbonate (0.2610 g, 0.80
mmol) and MeOH (15 mL) under 60°C for 10 h. The reaction mixture was concentrated in vacuum, and dispersed
in dichloromethane, followed by washing 3 times with brine. The organic layer was concentrated, and the
obtained crude residual was purified using flash silical gel chromatography (Dichloromethane). The product is
red powder, with yield 0.1360 g, 70%. When the base was changed from carbonate to triethylamine, sodium
hydrogen carbonate and potassium carbonate, the reaction yield is 0%, 63%, 69%, respectively. Enantiomers
of P were separated via Chial HPLC, which was performed on an Agilent Technologies 1200 infinity system,
monitored at 400 nm. Mixed solvent (CHsCN/H20=7/3) was used as eluent, flow rate was 1.0 mL/min. Finally
two enantiomers P1 and P2 could be obtained (Figure S1).

Comparison of two pathways for the product P (method 1 and method 2). Method 1 is a kind of controlled
stepwise reaction that starting from 5, going through three steps (reaction f, g and h), and finally product
generates. Since intermediate 7 is not stable enough, the yield of reaction g is unsatisfactory. The one-pot
multicomponent reaction is a good solution for this difficulty, which consumes less reaction time and avoid
tedious labor for purification, and most of all, the yield of 70% is higher than the overall yield of method 1 (38%).
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Figure S1. Chial HPLC chromatogram of a) the crude sample P and b) c) two enantiomers after separation (P1 and P2).
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Results and Discussion

1. Crystallography Results.

Ci2

Figure S2. ORTEP diagram of P with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(The crystal was obtained by slow recrystallization from mixed solution dichloromethane/toluene for 3 days. Solvent molecule

dichloromethane shows slight disorder)

Table S1. Crystal data and structure refinement for P.

Identification code (CCDC No.) 1887556

Empirical formula C29.50H22CINsO28

Formula weight 546.03

Temperature (K) 293(2)

Wavelength (A) 1.54184

Crystal system triclinic

Space group P-1

Unit cell dimensions (A, °) a =8.0089(2); a = 82.255(3)

b = 12.1459(4); B = 80.785(2)

c=13.9061(4); y = 79.244(3)

Volume (A) 1304.11(7)

z 2

Calculated density (g cm™) 1.391

Absorption coefficient (mm-") 2.354

Fooo 566

Reflections collected 21033

Independent reflections 5161 [Rint = 0.0215]
Completeness to Bmax (%) 0.979

Max. and min. transmission and

Refinement method Full-matrix least-squares on F?

S6



Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [I>20(/)]

R indices (all data)

Largest diff. peak and hole (e A®)

5161/0/373

1.033

R1=0.0577, wR2 = 0.1661
R1=0.0593, wR2 = 0.1679

1.319 and -1.592

Table S2. Selected bond distances (A) and angles (°) for P.

N(4)-C(18)
N(4)-C(20)
N(5)-C(17)

C(15)-C(16)

C(15)-C(20)

C(20)-C(21)

1.764(2)
1.760(2)
1.359(3)
1.387(3)
1.329(3)
1.442(3)
1.417(3)
1.474(3)
1.282(3)
1.484(3)
1.153(3)
1.358(3)
1.540(3)
1.522(3)

C(20)-C(29)
C(14)-8(1)-C(1)
C(6)-N(1)-C(7)
C(9)-N(1)-C(6)
C(18)-N(4)-C(20)
N(4)-C(20)-C(15)
N(4)-C(20)-C(21)
N(4)-C(20)-C(29)
C(21)-C(20)-C(15)
C(29)-C(20)-C(15)
C(29)-C(20)-C(21)
N(3)-C(22)-C(21)
N(2)-C(23)-0(1)
C(29)-C(24)-0(1)

1.514(4)
100.01(11)
118.86(18)
121.78(18)
106.55(18)
105.33(17)
107.55(16)
110.12(17)
111.32(17)
112.36(17)
109.96(17)

179.7(2)

110.61(18)

122.97(19)
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2. Detection towards hypochlorite.
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Figure S3. Mass spectra of P before and after adding hypochlorite (PDO).
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Figure S4. CD spectrum of P1 (20 uM) toward different concentration of hypochlorite.

----- 525.0 uM
e 500.0 uM

T T T T
400 450 500 550 600

Wavelength (nm)

f T T
250 300 350
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"H NMR and "*C NMR Spectra.
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Figure S12. '"H NMR spectrum of 1 in acetone-ds.
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Figure S27. Mass spectra of 5.
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Figure $29. Mass spectra of 7.
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