Electronic Supplementary Information

Access to 2-Naphthols via Ru(II)-Catalyzed C-H Annulation of Nitrones with α-Diazo Sulfonyl Ketones

Lingheng Kong, Xi Han, Xingwei Li*

Key Laboratory of Applied Surface and Colloid Chemistry of MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China

e-mail: lixw@snnu.edu.cn

Table of Contents

I.	General Remarks	S2
II.	Experimental Procedures and Characterizations	S2
III.	Derivatization Reaction	S13
IV.	Mechanistic Studies	S14
V.	Reference	S19
VI.	NMR Spectra	S20

I. General Remarks

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques or in a nitrogen-filled glovebox. NMR spectra were recorded on a 600 MHz NMR spectrometer in the solvent indicated. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. HRMS data were obtained on a Thermo Scientific LTQ Orbitrap Discovery spectrometer (Bremen, Germany). Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate/hexanes. Aryl nitrones ¹ and α -diazo sulfonyl ketones² were prepared according to literature reports.

II. Experimental Procedures and Characterizations

A mixture of aryl nitrone (1, 0.3 mmol), α -diazo sulfonyl ketone (2, 0.2 mmol), [Ru(*p*-cymene)Cl₂]₂ (5.0 mol %), AgNTf₂ (20.0 mol %), AgPF₆ (20.0 mol %), PivOH (2.0 equiv), and DCE (2.0 mL) were charged into a pressure tube. The reaction mixture was stirred under N₂ at 120 °C for 16 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (25:1) to afford the product **3**.

1-Tosylnaphthalen-2-ol (3aa)

3aa was obtained according to the general procedure in 79% yield (47.1 mg), white solid, mp = 123.6-125.3 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.14 (s, 1H), 8.34 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.86 – 7.80 (m, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.34 – 7.31 (m, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 9.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 144.8, 139.4, 137.5, 130.0, 129.7, 129.2, 128.9, 128.8, 126.8, 124.5, 123.2, 120.4, 112.3, 21.7. HRMS: m/z: [M + H]⁺ calculated for C₁₇H₁₅O₃S⁺: 299.0736, found 299.0736.

7-Methoxy-1-tosylnaphthalen-2-ol (3ba)

3ba was obtained according to the general procedure in 66% yield (43.1 mg), white solid, mp = 90.8-91.8 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.09 (s, 1H), 7.84 - 7.81 (m, 3H), 7.66 (d, J = 2.4 Hz, 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 9.0 Hz, 1H), 6.94 (dd, J = 8.8, 2.4 Hz, 1H), 3.80 (s, 3H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 159.5, 144.8, 139.2, 137.2, 131.4, 130.6, 129.9,

126.8, 124.0, 117.5, 116.3, 111.3, 103.3, 55.5, 21.8. HRMS: m/z: $[M + Na]^+$ calculated for $C_{18}H_{16}NaO_4S^+$: 351.0662, found 351.0659.

7-(*tert*-Butyl)-1-tosylnaphthalen-2-ol (3ca)

3ca was obtained according to the general procedure in 74% yield (52.5 mg), white solid, mp = 154.5-155.3 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.15 (s, 1H), 8.26 (s, 1H), 7.86 – 7.85 (m, 3H), 7.63 (d, J = 8.5 Hz, 1H), 7.39 (dd, J = 8.5, 1.8 Hz, 1H), 7.26 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 9.0 Hz, 1H), 2.35 (s, 3H), 1.30 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 151.7, 144.7, 139.4, 137.0, 129.8, 129.5, 128.7, 127.0, 126.9, 123.0, 119.5, 119.1, 112.2, 35.6, 31.3, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₂₁H₂₂NaO₃S⁺: 377.1182, found 377.1177.

7-Phenyl-1-tosylnaphthalen-2-ol (**3da**)

3da was obtained according to the general procedure in 67% yield (50.4 mg), yellow solid, mp = 160.0-161.5 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.18 (s, 1H), 8.54 (s, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 9.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 144.9, 141.4, 140.9, 139.4, 137.2, 130.0, 129.9, 129.6, 129.1, 128.0, 127.9, 127.7, 126.9, 124.1, 121.5, 120.3, 112.5, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₂₃H₁₈NaO₃S⁺: 397.0869, found 397.0863.

7-Fluoro-1-tosylnaphthalen-2-ol (3ea)

3ea was obtained according to the general procedure in 51% yield (32.3 mg), yellow solid, mp = 159.5-160.4 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.14 (s, 1H), 8.05 (dd, J = 12.2, 2.4 Hz, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.85 – 7.80 (m, 2H), 7.69 (dd, J = 8.9, 6.0 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 9.1 Hz, 1H), 7.09 (m, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.5 (d, J_{C-F} = 248.4 Hz), 159.7, 145.1, 138.9, 137.2, 131.5 (d, J_{C-F} = 10.0 Hz), 131.1 (d, J_{C-F} = 10.6 Hz), 130.1, 126.8, 125.8, 119.6 (d, J_{C-F} =

2.7 Hz), 114.3 (d, $J_{C-F} = 24.9$ Hz), 112.3, 108.3 (d, $J_{C-F} = 25.8$ Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.2. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₃FNaO₃S⁺: 339.0462, found 339.0461.

7-Bromo-1-tosylnaphthalen-2-ol (3fa)

3fa was obtained according to the general procedure in 60% yield (45.1 mg), yellow solid, mp = 166.7-168.6 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.16 (s, 1H), 8.56 (d, J = 1.8 Hz, 1H), 7.86 – 7.83 (m, 3H), 7.54 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 8.6, 1.8 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 9.0 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 145.2, 138.8, 137.2, 130.8, 130.5, 130.1, 128.0, 127.3, 126.9, 125.7, 123.8, 120.8, 112.0, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₃BrNaO₃S⁺: 398.9661, found 398.9656.

1-Tosyl-7-(trifluoromethyl)naphthalen-2-ol (**3ga**)

3ga was obtained according to the general procedure in 61% yield (45.0 mg), yellow solid, mp = 148.6-150.2 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.22 (s, 1H), 8.76 – 8.70 (m, 1H), 7.96 (d, J = 9.1 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.51 (dd, J = 8.3, 1.7 Hz, 1H), 7.33 – 7.27 (m, 3H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 145.4, 138.8, 136.9, 130.2, 130.1, 130.0, 128.9, 127.0, 124.2 (q, J_{C-F} = 272.9 Hz), 122.8, 120.9 (q, J_{C-F} = 4.6 Hz), 120.4 (q, J_{C-F} =3.3 Hz), 113.8, 100.2, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₃F₃NaO₃S⁺: 389.0430, found 389.0422.

3ha was obtained according to the general procedure in 69% yield (48.3 mg), white solid, mp = 169.2-170.3 °C, $R_f = 0.20$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.20 (s, 1H), 9.15 (s, 1H), 7.95 – 7.89 (m, 4H), 7.74 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 8.1 Hz, 2H), 7.28 – 7.23 (m, 1H), 3.97 (s, 3H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 159.0, 145.1, 139.0, 136.9, 131.1, 130.1, 129.9, 129.3, 128.9, 127.2, 125.8, 124.3, 122.8, 113.8, 52.6, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₉H₁₆NaO₅S⁺: 379.0611, found 379.0601.

1-Tosylnaphthalene-2,7-diol (3ia)

3ia was obtained according to the general procedure in 56% yield (35.4 mg), white solid, mp = 194.9-195.8 °C, $R_f = 0.10$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.04 (s, 1H), 7.84 – 7.81 (m, 4H), 7.58 (d, J = 8.8 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.9 Hz, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.34 (s, 1H), 2.31 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 156.6, 144.9, 138.9, 137.5, 131.5, 131.3, 130.1, 126.7, 124.0, 117.4, 115.8, 110.8, 106.7, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₄NaO₄S⁺: 337.0505, found 337.0498.

6-Methyl-1-tosylnaphthalen-2-ol (3ja)

3ja was obtained according to the general procedure in 64% yield (40.2 mg), yellow solid, mp = 126.0-127.7 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.03 (s, 1H), 8.23 (d, J = 8.8 Hz, 1H), 7.88 – 7.78 (m, 3H), 7.47 (s, 1H), 7.29 (dd, J = 8.9, 1.9 Hz, 1H), 7.25 – 7.24 (m, 2H), 7.13 (d, J = 9.1 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 144.7, 139.4, 137.0, 134.1, 130.9, 130.0, 129.2, 128.4, 127.6, 126.7, 123.0, 120.2, 112.2, 21.7, 21.1. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₆NaO₃S⁺: 335.0712, found 335.0705.

6-Chloro-1-tosylnaphthalen-2-ol (3ka)

31a was obtained according to the general procedure in 66% yield (44.1 mg), white solid, mp = 142.0-143.6 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.11 (s, 1H), 8.30 (d, J = 9.2 Hz, 1H), 7.82 – 7.80 (m, 3H), 7.67 (d, J = 2.3 Hz, 1H), 7.39 (dd, J = 9.3, 2.3 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 9.1 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.8, 145.1, 139.0, 136.4, 130.4, 130.1, 129.8, 129.4, 127.9, 127.8, 126.7, 124.8, 121.7, 112.7, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₃ClNaO₃S⁺: 355.0166, found 355.0160.

Methyl 6-hydroxy-5-tosyl-2-naphthoate (3la)

3ma was obtained according to the general procedure in 81% yield (71.2 mg), white solid, mp = 154.2-155.7 °C, $R_f = 0.10$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.31 (s, 1H), 8.42 (s, 1H), 8.39 (d, J = 9.2 Hz, 1H), 8.01 (m, 2H), 7.83 (d, J = 8.0 Hz, 2H), 7.25 (m, 3H), 3.93 (s, 3H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.6, 160.4, 145.1, 138.9, 138.4, 132.3, 131.7, 130.1, 128.4, 128.1, 126.8, 126.1, 123.3, 121.3, 112.8, 52.4, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₁₉H₁₆NaO₅S⁺: 379.0611, found 379.0604.

6-Methoxy-1-tosylnaphthalen-2-ol (3ma)

3ka was obtained according to the general procedure in 80% (20:1) yield (52.6 mg), white solid, mp = 131.1-133.2 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.90 (s, 1H), 8.27 (d, J = 9.4 Hz, 1H), 7.82 – 7.79 (m, 3H), 7.25 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 9.0 Hz, 1H), 7.12 (dd, J = 9.4, 2.8 Hz, 1H), 7.03 (d, J = 2.8 Hz, 1H), 3.82 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.0, 156.3, 144.7, 139.3, 136.3, 130.3, 130.0, 126.7, 124.6, 124.3, 120.7, 120.4, 112.5, 108.2, 55.4, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₆NaO₄S⁺: 351.0662, found 351.0655.

5-Methyl-1-tosylnaphthalen-2-ol (**3na**)

3na was obtained according to the general procedure in 74% yield (46.4 mg), yellow solid, mp = 160.2-161.4 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.16 (s, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.14 (d, J = 9.4 Hz, 1H), 7.82 – 7.80 (m, 2H), 7.34 – 7.31 (m, 1H), 7.25 – 7.23 (m, 2H), 7.20 (d, J = 9.3 Hz, 1H), 7.16 – 7.14 (m, 1H), 2.61 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.5, 144.7, 139.4, 135.6, 133.5, 130.0, 129.9, 128.6, 127.9, 126.7, 125.7, 121.5, 119.9, 112.7, 21.7, 19.9. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₆NaO₃S⁺: 335.0712, found 335.0704.

5-Methoxy-1-tosylnaphthalen-2-ol (3oa)

30a was obtained according to the general procedure in 90% yield (59.0 mg), white solid, mp = 142.2-143.0 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.14 (s, 1H), 8.42 (d, J = 9.3 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.3 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.13 (d, J = 9.3 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 3.90 (s, 3H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 156.0, 144.5, 139.2, 131.4, 130.9, 129.8, 129.3, 126.6, 120.5, 118.9, 115.3, 111.9, 103.2, 55.6, 21.6. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₆NaO₄S⁺: 351.0662, found 351.0658.

5-Fluoro-1-tosylnaphthalen-2-ol (**3pa**)

3pa was obtained according to the general procedure in 53% yield (33.4 mg), white solid, mp = 146.1-146.6 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.21 (s, 1H), 8.23 (d, J = 9.3 Hz, 1H), 8.12 (d, J = 8.8 Hz, 1H), 7.83 – 7.81 (m, 2H), 7.40 – 7.36 (m, 1H), 7.27 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 9.3 Hz, 1H), 7.01 – 6.98 (m, 1H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 159.2 (d, $J_{C-F} = 253.0$ Hz), 145.0, 139.1, 131.2 (d, $J_{C-F} = 3.5$ Hz), 130.1, 129.7 (d, $J_{C-F} = 7.3$ Hz), 129.2 (d, $J_{C-F} = 9.1$ Hz), 126.8, 120.8 (d, $J_{C-F} = 2.1$ Hz), 119.1 (d, $J_{C-F} = 16.7$ Hz), 119.0 (d, $J_{C-F} = 4.3$ Hz), 112.5, 108.7 (d, $J_{C-F} = 19.7$ Hz), 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -120.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₃FNaO₃S⁺: 339.0462, found 339.0454.

5-Bromo-1-tosylnaphthalen-2-ol (**3qa**)

3qa was obtained according to the general procedure in 76% yield (57.4 mg), white solid, mp = 158.0-1158.8 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.23 (s, 1H), 8.42 (d, J = 9.4 Hz, 1H), 8.35 (d, J = 8.8 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.28 – 7.25 (m, 4H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 145.0, 139.1, 136.4, 131.2, 130.1, 129.1, 128.8, 127.2, 126.7, 124.0, 122.9, 121.8, 112.6, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₃BrNaO₃S⁺: 398.9661, found 398.9648.

1-Tosyl-5-(trifluoromethyl)naphthalen-2-ol (3ra)

3ra was obtained according to the general procedure in 63% yield (46.4 mg), white solid, mp = 98.0-99.2 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.25 (s, 1H), 8.61 (d, J = 8.9 Hz, 1H), 8.30 (d, J = 9.5 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 7.4 Hz, 1H), 7.49 (t, J = 8.1 Hz, 1H), 7.33 (d, J = 9.5 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.9, 145.2, 139.0, 133.0 (q, J_{C-F} = 3.0 Hz), 130.8, 130.2, 127.5, 127.3, 127.2 (q, J_{C-F} = 42.2 Hz), 126.8, 124.7, 124.4 (q, J_{C-F} = 274.1 Hz), 123.01 (q, J_{C-F} = 6.1 Hz), 122.3, 113.4, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₃F₃NaO₃S⁺: 389.0430, found 389.0424.

4-Tosylbenzo[b]thiophen-5-ol (3sa)

3sa was obtained according to the general procedure in 22% yield (13.2 mg), yellow solid, mp = 179.3-179.9 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.21 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 5.6 Hz, 1H), 7.57 (d, J = 5.6 Hz, 1H), 7.28 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.8 Hz, 1H), 2.38 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.0, 145.0, 139.0, 136.3, 133.3, 130.8, 130.1, 129.9, 126.7, 122.8, 117.1, 115.1, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₅H₁₂NaO₃S₂⁺: 327.0120, found 327.0116.

1-Tosyldibenzo[*b*,*d*]furan-2-ol (**3ta**)

3ta was obtained according to the general procedure in 23% yield (15.7 mg), white solid, mp = 163.5-164.0 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.32 (s, 1H), 8.59 (d, J = 8.1 Hz, 1H), 7.85 – 7.83 (m, 2H), 7.73 (d, J = 9.0 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.32 – 7.28 (m, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 9.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.4, 154.8, 150.3, 145.1, 138.8, 130.1, 128.5, 126.2, 125.8, 123.2, 121.8, 121.4, 120.1, 119.1, 114.2, 111.8, 21.8. HRMS: m/z: [M + Na]⁺ calculated for C₁₉H₁₄NaO₄S⁺: 361.0505, found 361.0509.

¹⁻Tosylanthracen-2-ol (3ua)

3ua was obtained according to the general procedure in 61% yield (42.8 mg), yellow solid, mp = 136.2-137.0 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.38 (s, 1H), 8.83 (s, 1H), 8.24 (s, 1H), 8.04 (d, J = 9.2 Hz, 1H), 7.92 – 7.90 (m, 2H), 7.88 (t, J = 8.6 Hz, 2H), 7.48 – 7.45 (m, 1H), 7.43 – 7.40 (m, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 9.2 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 144.8, 139.2, 138.2, 133.1, 130.1, 129.9, 128.6, 128.3, 127.9, 127.7, 126.9, 126.8, 126.4, 125.8, 122.0, 120.9, 109.9, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₂₁H₁₆NaO₃S⁺: 371.0712, found 371.0708.

7-Tosylbenzo[pqr]tetraphen-8-ol (3va)

3va was obtained according to the general procedure in 62% yield (52.4 mg), yellow solid, mp = 222.1-222.9 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 5/1).

¹H NMR (600 MHz, DMSO- d_6) δ 11.42 (s, 1H), 9.67 (s, 1H), 9.41 (d, J = 9.3 Hz, 1H), 9.09 (d, J = 9.1 Hz, 1H), 8.42 (d, J = 9.2 Hz, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.24 (d, J = 7.3 Hz, 1H), 8.15 – 8.09 (m, 2H), 8.06 (t, J = 7.9 Hz, 1H), 8.00 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 9.3 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ 157.9, 144.0, 140.2, 132.2, 130.9, 130.6, 130.3, 129.6, 129.1, 128.6, 128.4, 127.7, 126.9, 126.6, 126.2, 125.8, 123.7, 122.3, 120.9, 119.3, 119.3, 115.2, 21.1. HRMS: m/z: [M + H]⁺ calculated for C₂₇H₁₉O₃S⁺: 423.1049, found 423.1049.

1-((4-Fluorophenyl)sulfonyl)naphthalen-2-ol (**3ab**)

3ab was obtained according to the general procedure in 76% yield (46.0 mg), white solid, mp = 118.4-119.2 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.05 (s, 1H), 8.31 (d, J = 8.7 Hz, 1H), 7.98 – 7.95 (m, 2H), 7.94 (d, J = 9.1 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 9.1 Hz, 1H), 7.15 (t, J = 8.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 165.7 (d, J_{C-F} = 256.6 Hz), 159.0, 138.3 (d, J_{C-F} = 3.4 Hz), 137.9, 129.6 (d, J_{C-F} = 31.4 Hz), 129.5, 129.4, 129.1, 128.9, 124.7, 122.9, 120.4, 116.8 (d, J_{C-F} = 22.7 Hz), 111.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.3. HRMS: m/z: [M + Na]⁺ calculated for C₁₆H₁₁FNaO₃S⁺: 325.0305, found 325.0302.

1-((4-Bromophenyl)sulfonyl)naphthalen-2-ol (3ac)

3ac was obtained according to the general procedure in 72% yield (52.5 mg), white solid, mp = 157.0-157.6 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1). ¹H NMR (600 MHz, CDCl₃) δ 11.02 (s, 1H), 8.29 (d, *J* = 8.7 Hz, 1H), 7.94 (d, *J* = 9.1 Hz, 1H), 7.81 –

7.78 (m, 2H), 7.72 (d, J = 8.0 Hz, 1H), 7.61 – 7.58 (m, 2H), 7.49 – 7.46 (m, 1H), 7.36 – 7.33 (m, 1H), 7.18 (d, J = 9.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 141.2, 138.0, 132.7, 129.5, 129.4, 129.1, 128.91, 128.90, 128.2, 124.7, 122.9, 120.3, 111.4. HRMS: m/z: [M + Na]⁺ calculated for C₁₆H₁₁BrNaO₃S⁺: 384.9504, found 384.9506.

1-((4-(Trifluoromethyl)phenyl)sulfonyl)naphthalen-2-ol (3ad)

3ad was obtained according to the general procedure in 69% yield (48.5 mg), white solid, mp = 151.8-152.3 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.99 (s, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 9.0 Hz, 1H), 7.75 – 7.72 (m, 3H), 7.50 – 7.47 (m, 1H), 7.38 – 7.35 (m, 1H), 7.20 (d, J = 9.1 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 145.7, 138.4, 135.3 (q, J_{C-F} = 33.1 Hz), 129.5, 129.4, 129.3, 128.9, 127.2, 126.6 (q, J_{C-F} = 3.8 Hz), 124.8, 123.1 (q, J_{C-F} = 273.1 Hz), 122.8, 120.4, 110.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₁F₃NaO₃S⁺: 375.0273, found 375.0272.

1-(Phenylsulfonyl)naphthalen-2-ol (3ae)

3ae was obtained according to the general procedure in 65% yield (36.8 mg), yellow solid, mp = 123.9-

125.2 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.12 (s, 1H), 8.33 (d, J = 8.7 Hz, 1H), 7.96 – 7.94 (m, 2H), 7.93 (d, J = 9.1 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.55 – 7.52 (m, 1H), 7.49 – 7.43 (m, 3H), 7.34 – 7.31 (m, 1H), 7.18 (d, J = 9.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 142.2, 137.7, 133.7, 129.6, 129.4, 129.3, 128.9, 128.9, 126.7, 124.5, 123.1, 120.3, 111.9. HRMS: m/z: [M + Na]⁺ calculated for C₁₆H₁₂NaO₃S⁺: 307.0399, found 307.0397.

1-(Naphthalen-2-ylsulfonyl)naphthalen-2-ol (**3af**)

3af was obtained according to the general procedure in 76% yield (50.5 mg), white solid, mp = 164.7-165.1 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.22 (s, 1H), 8.62 (s, 1H), 8.42 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 9.1 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.82 – 7.78 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.44 – 7.40 (m, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 9.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 138.9, 137.8, 135.3, 132.1, 129.9, 129.7, 129.6, 129.5, 129.3, 129.0, 128.9, 128.1, 128.0, 127.9, 124.5, 123.1, 121.6, 120.4, 111.9. HRMS: m/z: [M + Na]⁺ calculated for C₂₀H₁₄NaO₃S⁺: 357.0556, found 357.0551.

1-((2,3-Dihydro-1*H*-inden-5-yl)sulfonyl)naphthalen-2-ol (3ag)

3ag was obtained according to the general procedure in 74% yield (48.1 mg), white solid, mp = 143.4-144.0 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 11.18 (s, 1H), 8.36 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 9.1 Hz, 1H), 7.76 – 7.74 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.47 – 7.44 (m, 1H), 7.33 – 7.30 (m, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.17 (d, J = 9.0 Hz, 1H), 2.89 – 2.87 (m, 2H), 2.87 – 2.85 (m, 2H), 2.07 – 2.01 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.7, 151.2, 145.9, 140.0, 137.4, 129.7, 129.2, 128.9, 128.8, 125.03, 125.00, 124.4, 123.2, 122.5, 120.3, 112.5, 33.0, 32.7, 25.4. HRMS: m/z: [M + Na]⁺ calculated for

C₁₉H₁₆NaO₃S⁺: 347.0712, found 347.0706.

1-(Phenethylsulfonyl)naphthalen-2-ol (3ah)

3ah was obtained according to the general procedure in 72% yield (44.9 mg), white solid, mp = 91.9-92.6 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.85 (s, 1H), 8.51 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.45 – 7.41 (m, 1H), 7.21 – 7.17 (m, 2H), 7.16 – 7.13 (m, 1H), 7.12 (d, J = 9.0 Hz, 1H), 7.04 – 7.02 (m, 2H), 3.66 – 3.62 (m, 2H), 3.09 – 3.05 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 159.2, 137.7, 136.9, 130.0, 129.6, 129.4, 128.9, 128.8, 128.3, 127.1, 124.7, 122.7, 120.3, 110.2, 57.5, 28.6. HRMS: m/z: [M + Na]⁺ calculated for C₁₈H₁₆NaO₃S⁺: 335.0712, found 335.0705.

1-(Cyclohexylsulfonyl)naphthalen-2-ol (3ai)

3ai was obtained according to the general procedure in 65% yield (37.9 mg), yellow solid, mp = 91.4-92.3 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1).

1H NMR (600 MHz, CDCl₃) δ 10.85 (s, 1H), 8.55 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.612 – 7.59 (m, 1H), 7.44 – 7.41 (m, 1H), 7.13 (d, J = 9.0 Hz, 1H), 3.27 – 3.22 (m, 1H), 2.04 – 1.86 (m, 4H), 1.67 – 1.63 (m, 3H), 1.25 – 1,18 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 137.4, 130.4, 129.5, 129.1, 129.0, 124.5, 123.2, 120.1, 109.0, 63.82, 63.80, 25.2, 25.1. HRMS: m/z: [M + Na]⁺ calculated for C₁₆H₁₈NaO₃S⁺: 313.0869, found 313.0864.

1-(Thiophen-2-ylsulfonyl)naphthalen-2-ol (3aj)

3aj was obtained according to the general procedure in 73% yield (42.6 mg), white solid, mp = 135.3-136.5 °C, $R_f = 0.25$ (hexanes/ethyl acetate = 15/1).

¹H NMR (600 MHz, CDCl₃) δ 10.87 (s, 1H), 8.60 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.78 –

7.77 (m, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.56 – 7.54 (m, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 9.0 Hz, 1H), 7.04 (t, J = 4.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 143.6, 137.9, 133.5, 133.0, 129.5, 129.4, 129.1, 128.9, 127.7, 124.7, 123.2, 120.4, 113.4. HRMS: m/z: [M + Na]⁺ calculated for C₁₄H₁₀NaO₃S₂⁺: 312.9964, found 312.9958.

3-Methyl-1-(phenylsulfonyl)naphthalen-2-ol (3ak)

3ak was obtained according to the general procedure in 66% yield (39.2 mg), white solid, mp = 141.6-142.4 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1)

¹H NMR (600 MHz, CDCl₃) δ 11.41 (s, 1H), 8.27 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 7.8 Hz, 2H), 7.78 (s, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.38 (t, J = 7.9 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.5, 142.4, 136.9, 133.6, 129.4, 129.0, 128.5, 128.48, 128.44, 127.9, 126.6, 124.4, 122.9, 111.2, 17.2. HRMS: m/z: [M + Na]⁺ calculated for C₁₇H₁₄NaO₃S⁺: 321.0556, found 321.0552.

3-Benzyl-1-tosylnaphthalen-2-ol (3al)

3al was obtained according to the general procedure in 45% yield (34.9 mg), white solid, mp = 166.7-167.2 °C, $R_f = 0.30$ (hexanes/ethyl acetate = 15/1)

¹H NMR (600 MHz, CDCl₃) δ 11.50 (s, 1H), 8.29 (dd, J = 8.7, 1.0 Hz, 1H), 7.83 – 7.79 (m, 2H), 7.63 (s, 1H), 7.58 (dd, J = 8.1, 1.4 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H), 7.29 – 7.27 (m, 2H), 7.27 – 7.22 (m, 4H), 4.16 (s, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.7, 144.7, 139.5, 139.4, 136.8, 132.0 130.0, 129.3, 128.8, 128.7, 128.66, 128.4, 128.1, 126.7, 126.5, 124.4, 122.9, 112.0, 36.5, 21.7. HRMS: m/z: [M + Na]⁺ calculated for C₂₄H₂₀NaO₃S⁺: 411.1025, found 411.1034.

III. Derivatization Reaction

To a 15 mL tube equipped with a magnetic stirrer was charged with **3qa** (37.7 mg, 0.1 mmol), NBS (21.4 mg, 0.12 mmol), and KOAc (14.7 mg, 0.15 mmol) in 1.0 mL H₂O. Then the mixture

was stirred at room temperature for the desired time (monitored by TLC). After the reaction, the resulting mixture was extracted three times with CH₂Cl₂. The combined organic layer was dried over anhydrous MgSO₄, after which the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether and ethyl acetate (20:1) as the eluent to afford the desired product **5** as brown solid in 98% yield (44.5 mg), mp = 82.3-84.1 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 7.9 Hz, 1H), 7.87 (d, J = 10.3 Hz, 1H), 7.72 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.38 – 7.36 (m, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.31 (d, *J* = 10.2 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 186.6, 146.9, 143.7, 135.4, 135.0, 134.2, 132.0, 131.1 130.4, 129.2, 126.7, 125.7, 124.9, 81.1, 22.0. HRMS: m/z: [M + H]⁺ calculated for C₁₇H₁₃Br₂O₃S⁺: 454.8947, found 454.8947.

- **IV. Mechanistic Studies**
- (a) H/D Exchange Experiment

Aryl nitrone (1, 0.3 mmol), α -diazo sulfonyl ketone (2, 0.2 mmol), [Ru(*p*-cymene)Cl₂]₂ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), and CD₃COOD (2.0 equiv) were dissolved in DCE in a pressure tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C for 24 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the recovered **1a** and the product **3aa**, which was characterized by ¹H NMR spectroscopy. The *ortho* ' positions of the recovered **1a** and the product **3aa** were deuterated (43% D, and 38% D respectively).

An equimolar mixture of aryl nitrone **1b** (0.1 mmol) and **1g** (0.1 mmol), α -diazo sulfonyl ketone (**2**, 0.2 mmol), [Ru(*p*-cymene)Cl₂]₂ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), PivOH (2.0 equiv), and DCE (2 mL) were charged into a pressure tube under N₂. The reaction mixture was stirred at 120 °C for 12 h. The solvent was rapidly removed under reduced pressure and the residue was purified by silica gel chromatography using PE/EA to afford the mixed product. The yield ratio (**3ba/3ga** = 11:1) was determined on the basis of ¹H NMR analysis.

(c) Isolation of Intermediate 6 and Control Experiments

Aryl nitrone **1a** (0.3 mmol), diazo sulfonylketone **2a** (0.2 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), PivOH (2.0 equiv), and DCE (2 mL) were charged into a pressure tube. The reaction mixture was stirred under N₂ at 80 °C for 16 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (2:1) to afford the product **6** in 49% yield (38.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (s, 1H), 7.63 – 7.61 (m, 1H), 7.43 – 7.40 (m, 3H), 7.28 – 7.25 (m, 1H), 7.21 – 7.16 (m, 3H), 5.84 (s, 1H), 2.41 (s, 3H), 2.37 (s, 3H), 1.64 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 199.3, 145.0, 134.3, 132.5, 130.8, 130.2, 130.1, 129.7, 129.5, 129.4, 129.1, 127.9, 78.1, 71.2, 31.7, 28.2, 21.8. HRMS: m/z: [M + H]⁺ calculated for C₂₁H₂₆NO₄S⁺: 388.1577, found 388.1576.

Intermediate 6 (0.14 mmol), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), PivOH (2.0 equiv), and DCE (1.4 mL) were charged into a pressure tube. The reaction mixture was stirred under N₂ at 120 °C for 16 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (2:1) to afford the product **3aa** in 69% yield (28.8 mg). What's more, the intermediate **6** could be converted to the final product **3aa** without Ru(II) catalyst.

(d) KIE Study

Aryl nitrone **1a** (0.15 mmol), diazo sulfonylketone **2a** (0.1 mmol), $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), and CH₃COOH (2.0 equiv) were dissolved in DCE (1 mL) in a pressure tube under N₂ atmosphere, while the other pressure tube was changed with **1a**-*d*₅ (0.1 mmol), **2a** (0.1 mmol), $[\text{Ru}(p\text{-cymene})\text{Cl}_2]_2$ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), and CD₃COOD (2.0 equiv) in DCE (1 mL) under N₂ atmosphere. The two reaction mixtures were stirred side by side in an oil bath preheated at 100 °C for 15 min. The two reaction tubes were chilled in an ice bath and the resulting mixtures in the two tubes were rapidly combined. The solvent was rapidly removed under reduced pressure. The resulting residue was purified by silica gel chromatography using EA/PE to afford the rude products. The KIE value was determined to be $k_{\text{H}}/k_{\text{D}}$ = 0.9 on the basis of ¹H NMR analysis.

Aryl nitrone **1a** (0.2 mmol), **1a**- d_5 (0.2 mmol), diazo sulfonylketone **2a** (0.2 mmol), [Ru(p-cymene)Cl₂]₂ (5 mol %), AgNTf₂ (20 mol %), AgPF₆ (20 mol %), and CH₃COOH (1.0 equiv), and CD₃COOD (1.0 equiv) were dissolved in DCE (2 mL) in a pressure tube under N₂ atmosphere. The reaction mixture was stirred at 100 °C for 15 min. After the solvent was removed under reduced pressure, the resulting residue was purified by silica gel chromatography using EA/PE to afford the rude products. The KIE value was determined to be $k_{\rm H}/k_{\rm D}$ = 2.0 on the basis of ¹H NMR analysis.

V. Reference

- Morales, S.; Guijarro, F. G.; Alonso, I.; GarcíaRuano, J. L.; Belen Cid, M. ACS Catal. 2016, 6, 84.
- Shi, B.; Blake, A. J.; Lewis, W.; Campbell, I. B.; Judkins, B. D.; Moody, C. J. J. Org. Chem. 2010, 75, 152.

VI. NMR Spectra

¹H and ¹³C NMR spectra for compound **3aa**

¹H and ¹³C NMR spectra for compound **3ba**

¹H and ¹³C NMR spectra for compound **3ca**

¹H and ¹³C NMR spectra for compound **3da**

¹H, ¹³C and ¹⁹F NMR spectra for compound **3ea**

¹H, ¹³C and ¹⁹F NMR spectra for compound **3ga**

--62.6076

-50 -60 -70 -80 -90 -100 -110 f1 (ppm)

-40

10 0 -10

-20

-130 -140 -150 -160 -170 -180 -190 -200

-120

-210

¹H and ¹³C NMR spectra for compound **3ha**

¹H and ¹³C NMR spectra for compound **3ia**

¹H and ¹³C NMR spectra for compound **3ja**

¹H and ¹³C NMR spectra for compound **3la**

¹H and ¹³C NMR spectra for compound **3ma**

¹H and ¹³C NMR spectra for compound **3na**

¹H and ¹³C NMR spectra for compound **30a**

¹H, ¹³C and ¹⁹F NMR spectra for compound **3pa**

-210

-190 -200

-150 -160

10

0

-10

-20

50 -60 -70 -80 -90 -100 -110 -120 -120 -140 f1 (pps)

S42

¹H and ¹³C NMR spectra for compound **3ta**

¹H and ¹³C NMR spectra for compound **3va**

¹H, ¹³C and ¹⁹F NMR spectra for compound **3ab**

¹H and ¹³C NMR spectra for compound **3ac**

80

60

20

¹H, ¹³C and ¹⁹F NMR spectra for compound **3ad**

85 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100

90 85 fl (ppm) 80

60

40 35

95

-5 -10

15 10 5 0

25 20

S51

180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100

S52

50 45 40 35

60

25 20 15 10 5

95 90 85 80 75 f1 (ppm) -5 -10 -15

0

¹H and ¹³C NMR spectra for compound **3ag**

S53

¹H and ¹³C NMR spectra for compound **3ah**

S54

¹H and ¹³C NMR spectra for compound **3ai**

¹H and ¹³C NMR spectra for compound **3aj**

S57

¹H and ¹³C NMR spectra for compound **3al**

S58

¹H and ¹³C NMR spectra for compound 5

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 99 885 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

S60