Supporting Information

An Easy Access to Topical Gels of an Anti-

cancer Prodrug (5-Flurouracil Acetic Acid) for

Self-drug-delivery Applications

Poulami Chakraborty and Parthasarathi Dastidar* ${ }^{[a]}$

Email:ocpd@iacs.res.in
${ }^{[a]}$ Department of Organic Chemistry
Indian Association for the Cultivation of Science, 2A \& 2B Raja
S. C. Mullick Road,

Jadavpur, Kolkata - 700032, West Bengal, India

Materials, Methods and Synthesis

Materials

All chemicals were commercially available and were used without any further purification. All solvents were of laboratory reagent (LR) grade and were used without any distillation. All the cell lines under study were purchased from the National Centre for Cell Science, (NCCS), Pune, India.

Methods

The mass spectra was collected with a QTOF Micro YA263 instrument. FTIR spectra were recorded by a Perkin Elmer FTIR spectrometer (spectrometer two) instrument. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with 400 and 500 MHz spectrometers (BrukerUltrashield Plus-500). TEM images were captured with a JEOL JEM 2100F (for FEG-TEM) and JEOL JEM 2010/11 (for High Resolution Transmission Electron Microscopy (HR-TEM)) instrument using 300 mesh carbon coated copper TEM grids. Rheology studies were carried out with the Anton Paar Modular Compact Rheometer MCR 102. MTT assay was conducted using a multi-plate ELISA reader (Varioskan Flash Elisa Reader, Thermo Fisher).

Synthesis of 5-FuA

5-Fluorouracilacetic acid (5-FuA) was synthesized using the reported procedure. ${ }^{[1]}$ Aqueous solution (0.6 mL) of chloroacetic acid ($3 \mathrm{mmol}, 0.283 \mathrm{~g}$) was added using a dropping funnel to an aqueous $\mathrm{KOH}(4 \mathrm{mmol}, 0.224 \mathrm{~g})$ solution (1.0 mL) of 5-fluorouracil ($2 \mathrm{mmol}, 0.260 \mathrm{gm}$) under stirring condition at room temperature. After complete addition of the chloroacetic acid solution, the reaction mixture was heated to $50{ }^{0} \mathrm{C}$ in an oil-bath under stirring condition for 8 H maintaining pH 10 of the reaction mixture by adding KOH solution $(10 \mathrm{M})$ as and when required. The reaction mixture was finally acidified by conc. HCl to get the product as a precipitate ($0.300 \mathrm{gm}, \sim 80 \%$ yield) (Figure S1).

1. M. Li, Z. Liang, X. Sun, T. Gong, Z. Zhang, PLOS ONE2014, 9, 1-13.

Synthesis of the Salts

The PAM salts (Scheme 2) were synthesized by reacting 5-FuA with the corresponding primary amines in $1: 1$ molar ratio in MeOH at room temperature. In a typical experiment, calculated amount of the reactants was taken in a beaker (25 ml). $\mathrm{MeOH}(\sim 10 \mathrm{ml})$ was added to it followed by half an hour sonication to make the solution homogeneous. The beaker was then kept overnight in open air at room temperature to obtain the salt.

Physicochemical Data

5-FuA: White Solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D $_{6}$) $\delta 11.92(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{D}_{6}$) $\delta 169.3,157.7,149.7,140.5,138.2$, 130.4, 48.7 ppm.(Figure S3); HRMS, ESI $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \mathrm{m} / \mathrm{z}(100 \%)$: Calculated for $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{FN}_{2} \mathrm{O}_{4}\right)\right][\mathrm{M}+\mathrm{H}]^{+}$: 189.03; found: 189.03.

FuA-3: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 43.72, H 5. 71, N 17.00; found : C 43.35, H 5.80, N 16.97; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 7.96-7.94 (d, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D $_{6}$) $\delta 169.5,157.6,149.6,140.1,137.8,131.3,49.8,40.3$, 20.4,10.8 ppm.(Figure S 4).

FuA-4: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 45.97, H 6.17, N 16.08; found : C 45.58, H 5.74, N 15.73; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.91-7.90$ (d, $J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.89-0.86(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{D}}$) $\delta 169.4,157.6,149.6,139.9,137.6$, 131.8, 50.6, 38.2, 29.2, 19.1,13.4 ppm.(Figure S5).

FuA-5: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 47.99, H 6.59, N 15.26; found : C 47.54, H 6.32, N 15.63; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-D ${ }_{6}$) $\delta 7.89-7.86$ (dd, $J=$ $6.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.49(\mathrm{~m}$, 2H), $1.28-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.88-0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D $\left.{ }_{6}\right) \delta$ 169.5, 157.4, 149.7, 139.9, 137.6, 131.5, 50.7, 38.6, 28.0, 26.8, 21.6,13.6 ppm. (Figure S6).

FuA-6: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 49.82, H 6.97, N 14.52; found : C 49.48, H 6.58, N 14.81; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.89-7.87$ (d, $J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 2.75-2.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 6 \mathrm{H})$, $0.88-0.85(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D 6) $\delta 169.7$, 157.6, 149.7, 139.9, 137.6, 131.6, 50.8, 30.7, 27.4, 27.2, 25.5, 21.8,13.8 ppm.(Figure S7).

FuA-7: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 51.48, H 7.31, N 13.85; found : C 51.83, H 7.72, N 14.00; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-D $_{6}$) $\delta 8.97$ (s, 1H), 7.907.89 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (s, 2H), $2.73-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.26$ (m, 8 H), 0.87-0.85 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.1,157.3$, 149.6, 139.6, 137.8, 131.5, 50.6, 38.7, 30.9, 28.1, 27.2, 25.7, 21.8,13.8 ppm.(Figure S8).

FuA-8: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 52.98, H 7.62, N 13.24; found : C 52.53, H 7.66, N 13.28; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-D $_{6}$) $\delta 9.01$ (s, 1H), 7.90$7.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25(\mathrm{~m}$, $10 \mathrm{H}), 0.87-0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-D $_{6}$) $\delta 169.0,157.5,149.6$, $139.6,137.8,131.8,50.6,40.1,38.6,31.0,28.4,27.2,25.8,21.9,13.8 \mathrm{ppm}$.(Figure S9).

FuA-9: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 54.37, H 7.91, N 12.68; found : C 54.04, H 7.39, N 12.51; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.88-7.87$ (d, $J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.91 ($\mathrm{s}, 2 \mathrm{H}$), $2.74-2.71$ (m, 2H), 1.52-1.47 (m, 2H), $1.29-1.25$ (m, 12H), 0.87-0.84 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.2,157.3,149.6,140.0,137.7$, 131.3, 50.3, 38.6, 31.2, 28.7, 28.5, 28.5, 27.0, 25.8, 22.0,13.9 ppm. (Figure S10).

FuA-10: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 55.64, H 8.17, N 12.17; found : C 55.34, H 8.57, N 12.48; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.87-7.86$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.24(\mathrm{~d}, J=20.5 \mathrm{~Hz}, 14 \mathrm{H})$, $0.87-0.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.4,157.7$, 149.8, $139.9,137.7$, 131.9, 50.9, 31.3, 28.9, 28.8, 28.6, 28.6, 27.8, 27.7, 25.9, 22.1, 13.9ppm.(S11).

FuA-11: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 56.81, H 8.41, N 11.69; found : C 56.53, H 8.31, N 11.25; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-D ${ }_{6}$) $\delta 7.88-7.86$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91$ (s, 2H), $2.74-2.71$ (m, 2H), 1.51-1.47 (m, 2H), 1.27-1.24 (d, J = 13.4 Hz, 16H), $0.87-0.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.4,157.6,149.7$, 139.9 , 137.6, 131.8, 50.7, 38.6, 31.2, 28.9, 28.9, 28.8, 28.6, 28.5, 27.2, 25.8, 22.0,13.8 ppm.(S12).

FuA-12: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 57.89, H 8.64, N 11.25; found : C 57.49, H 9.0, N 10.84; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.01$ (s, 1H), 7.90$7.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}$, $18 \mathrm{H}), 0.87-0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 169.0,157.3$, 149.6, $139.6,137.8,131.8,50.6,38.6,31.2,28.9,28.9,28.8,28.7,28.6,28.4,27.2,25.8,21.9,13.8$ ppm.(Figure S13).

FuA-14: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 59.83, H 9.04, N 10.47; found : C 60.01, H 8.83, N 10.64; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D $_{6}$) $\delta 7.87-7.85(\mathrm{~m}, 1 \mathrm{H})$, $3.91-3.90(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.24(\mathrm{~m}$, $22 \mathrm{H}), 0.87-0.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-D ${ }_{6}$) $\delta 169.2,157.7,149.7$, $139.7,137.9,131.9,50.7,38.7,31.3,29.0,28.9,28.9,28.7,28.6,27.1,25.9,22.1,14.0$ ppm.(S14).

FuA-15: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{FN}_{3} \mathrm{O}_{4}: \mathrm{C} 60.70, \mathrm{H} 9.22, \mathrm{~N}$ 10.11; found : C 60.29, H 9.59, N 9.82; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D 6) $\delta 7.87-7.85$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 24 \mathrm{H}), 0.87-0.83(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 168.6,157.4,149.7,139.8,137.6,131.8$, 50.9, 31.3, 29.0, 29.0, 28.9, 28.8, 28.7, 28.6, 27.4, 25.9, 22.1,14.0 ppm. (Figure S15).

FuA-16: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{FN}_{3} \mathrm{O}_{4}$: C 61.51, H 9.39, N 9.78; found : C 61.24, H 9.31, N 9.58; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) δ 7.87-7.85 (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.75-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 26 \mathrm{H}), 0.87-0.83(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 168.7,157.5,149.7,139.9,137.6,132.1$, 50.9, 31.3, 29.0, 29.0, 28.9, 28.8, 28.7, 28.6, 27.3, 25.8, 22.1, 14.0 ppm. (Figure S16).

FuA-18: White Solid; Elemental analysis calculated (\%) for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{FN}_{3} \mathrm{O}_{4}: \mathrm{C} 62.99$, H 9.69, N 9.18; found : C 62.67, H 9.47, N 8.97; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 7.91-7.89$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 30 \mathrm{H}), 0.87-0.83(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{D}}^{6}$) $\delta 169.0,162.4,157.4,149.7,139.9,131.4,72.3$, $49.9,49.8,40.1,38.8,35.8,31.3,30.8,29.0,29.0,28.9,28.8,28.7,28.5,27.0,25.8,22.1,13.9$ ppm.(Supporting Information, Figure S17).

Gelation and $T_{\text {gel }}$ experiments

The hydrogels as well as the organogels were prepared by dissolving the gelator salts in pure water (hydrogel) or in the corresponding organic solvent (organogel) by heating and then keeping it at room temperature. Most of the gels were formed within a few minutes. The gel formation was confirmed by tube inversion method wherein the gel was found to withstand its own weight against gravity. Minimum gelator concentration (MGC) was determined by gradually diluting a $4 \mathrm{wt} \% \mathrm{w} / \mathrm{v}$ gel till gel formation was ceased. Dropping ball method was employed to determine $\mathrm{T}_{\text {gel }}$ (gel to sol dissociation temperature). In a typical experiment, a glass ball (weighing 216.4 mg) was carefully placed on a gel bed (1 ml , at MGC) prepared in a test tube (internal diameter -11 mm) and immersed in an oil bath fitted with a thermometer. The oil bath was gradually heated and the temperature at which the ball touched the bottom of the test tube was recorded as the $\mathrm{T}_{\text {gel }}$.

Microscopy

A small amount of freshly prepared gel (at MGC) was scooped and carefully smeared on carboncoated Cu grids (300 mesh) and dried overnight under ambient condition. The images were recorded at an accelerating voltage of 200 kV without staining.

Rheology studies

A small amount of freshly prepared gel ($4 \mathrm{wt} \%, \mathrm{w} / \mathrm{v}$) was scooped and placed on the stationary plate of the rheometer and parallel plate geometry (diameter - $25 \mathrm{~mm}, 1 \mathrm{~mm}$ gap) was employed to carry out the rheological experiments.

X-ray Diffraction

X-ray quality single crystals of the salts (FuA-9, FuA-10, FuA-11, FuA-12, FuA-14,FuA-15) were grown at room temperature by slow evaporation technique from various solvent systems (Table S2). Single crystal X-ray diffraction data were collected using various diffractometer (Bruker APEX II, CCD area detector, Mo $\mathrm{K}_{\alpha}, \lambda=0.7107 \AA$, Bruker APEX III D8 Venture, PHOTON II detector, $\mathrm{Cu} \mathrm{K}_{\alpha}, \lambda=1.54184 \AA$). Data collection, data reduction, structure solution and refinement were carried out using the software packages of the corresponding diffractometer. All the structures were solved by direct methods and refined in a routine manner.

Hydrogen atoms were geometrically fixed. All the non-hydrogen atoms were treated anisotropically. CCDC-numbers 1868726, 1868727, 1868722, 1868723, 1868725, 1868724 contain the crystallographic data for FuA-9, FuA-10, FuA-11, FuA-12, FuA-14 and FuA-15 respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

MTT assay

The cells were grown in high-glucose DMEM (Dulbecco's modified Eagle's medium) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin in a humidified incubator at $37^{\circ} \mathrm{C}$ and under $5 \% \mathrm{CO}_{2}$ atmosphere. For MTT assay, the cells were then seeded in a 96-well plate for each experiment at a density of approximately 0.5×10^{4} cells per well. After incubating it for 24 h in a humidified incubator, various concentrations of the gelator salts or DMEM alone (control experiment) were applied to the cells and the mixtures were kept at $37^{0} \mathrm{C}$ under $5 \% \mathrm{CO}_{2}$ atmosphere for 72 h (for 36 h in case of B 16 F 10 cell line). Then the culture medium of each well of the 96 -well plate was replaced by the MTT reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; $100 \mu \mathrm{l}$) containing media and it was left for one and half hour under incubation followed by replacing the media by DMSO ($100 \mu \mathrm{l}$) with gentle shaking in order to dissolve the formazan produced by mitochondrial reductase of the live cell. The colourintensity of formazan (purple) attributing to the live cell concentration (cell viability) was measured by using a multi-plate ELISA reader at 570 nm . The percentage of cells, alive in presence of the gelator, was calculated by considering the DMEM-treated sample (control) as 100%. All these experiments were done in triplicate.

Cell Migration Experiment

For B16F10 and Hep G2 cell lines, cells were seeded in a 6-well plate and kept for 1 day until the plates become almost confluent. A narrow path in the middle of the plate was created by scratching uniformly with a $200 \mu \mathrm{~L}$ sterile pipette tip. The IC_{50} concentration of the gelator compounds were added to the cells. For the control experiment, no gelator salt was added. Still images were captured under an optical microscope (OLYMPUS CKX31) after different time intervals for 16 h (B16F10) and 72 h (HepG2) to measure migration speed for each case.

Hydrogel Leaching Experiment

$2.5 \mathrm{wt} \%$ of FuA-15 hydrogel (3 ml) was incubated with 3 ml of 1X PBS solution (3 ml) over the gel surface. The release was observed up to 30 hours for time intervals at 3, 6, 9, 12, 24 and 30 hour by taking an aliquot of $200 \mu \mathrm{l}$ (from the PBS solution) each time and recording the UV spectrophotometry after appropriate dilution.

Figure S1: Synthesis Scheme of 5-FuA (Acid).

Figure S2: IR data comparison between the acid (5-FuA) and the salts (FuA-3toFuA-18) proving the formation of salts.

Figure S3: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{F u A}$ in DMSO- d_{6}.

Figure S4: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-3 in DMSO-d ${ }_{6}$.

Figure S5: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-4 in DMSO-d ${ }_{6}$.

Figure S6: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-5 in DMSO- d_{6}.

Figure S7: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-6 in DMSO-d d_{6}.

Figure S8: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-7 in DMSO-d ${ }_{6}$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-8 in DMSO-d ${ }_{6}$.

Figure S10: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-9 in DMSO-d ${ }_{6}$.

Figure S11: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-10 in DMSO- d_{6}.

Figure S12: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-11 in DMSO-d ${ }_{6}$.

Figure S13: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-12 in DMSO- d_{6}.

Figure S14: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-14 in DMSO-d d_{6}.

Figure S15: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-15 in DMSO-d ${ }_{6}$.

Figure S16: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-16 in DMSO-d ${ }_{6}$.

Figure S17: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of FuA-18 in DMSO- d_{6}.

Table S1: Gelation Table including Minimum Gelling Concentration and Gel Dissociation Temperature

Solvent	$\begin{gathered} \text { FuA } \\ -3 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 4 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 5 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { FuA- } \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 8 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 9 \end{gathered}$	$\begin{gathered} \hline \text { FuA- } \\ 10 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 11 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 12 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ \hline \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 15 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 16 \end{gathered}$	$\begin{gathered} \text { FuA- } \\ 18 \end{gathered}$
$\mathrm{H}_{2} \mathrm{O}$	S	S	S	S	S	S	S	${ }^{4} G_{58}$	${ }^{1.8} G_{55}$	${ }^{4} G_{71}$	${ }^{1} \mathbf{G}_{71}$	${ }^{1} G_{70}$	${ }^{1.5} G_{60}$	${ }^{3.3} \mathbf{G}_{50}$
MS	S	INS	GP	INS	INS	GP	GP	${ }^{2.5} \mathrm{G}_{85}$	${ }^{1.8} \mathrm{G}_{88}$	${ }^{2.5} \mathrm{G}_{80}$	${ }^{1} G_{76}$	$\overline{{ }^{1.5} \mathbf{G}_{74}}$	${ }^{1.4} \mathrm{G}_{89}$	${ }^{2.2} \mathrm{G}_{90}$
PhNO_{2}	S	INS	GP	${ }^{4} \mathrm{G}_{80}$	${ }^{4} \mathrm{G}_{94}$	${ }^{4} G_{88}$	${ }^{4} G_{92}$	${ }^{2.5} \mathrm{G}_{81}$	${ }^{4} \mathbf{G}_{109}$	${ }^{2.5} \mathrm{G}_{76}$	${ }^{1.4} \mathrm{G}_{98}$	$\overline{{ }^{1.5} \mathbf{G}_{81}}$	${ }^{2} \mathbf{G}_{91}$	${ }^{2.5} \mathrm{G}_{96}$
PhCl	INS	INS	INS	INS	INS	GP	GP	GP	${ }^{4} \mathbf{G}_{71}$	${ }^{1.3} \mathrm{G}_{93}$	${ }^{1.2} \mathbf{G}_{94}$	$\overline{{ }^{1.2} \mathbf{G}_{91}}$	${ }^{1.2} \mathbf{G}_{74}$	${ }^{1.5} \mathrm{G}_{78}$
PhBr	INS	INS	INS	INS	INS	GP	GP	${ }^{1.2} \mathbf{G}_{94}$	${ }^{4} \mathbf{G}_{145}$	${ }^{1.2} \mathbf{G}_{86}$	${ }^{1.2} \mathbf{G}_{91}$	${ }^{1.3} \mathbf{G}_{103}$	${ }^{1.2} \mathbf{G}_{69}$	${ }^{2} \mathbf{G}_{82}$
DMSO	S	S	S	S	S	S	S	S	S	S	S	S	S	S
DMF	S	S	S	S	S	S	S	S(C)	S	S(C)	S	S	S	S
DMA	S	S	S	S	S	S	S	S	S	S	S	S	S	S
Toluene	INS	GP	GP	GP	P									
o-Xylene	INS	GP	INS	G_{149}	${ }^{4} \mathbf{G}_{138}$	${ }^{4} \mathbf{G}_{140}$	${ }^{4} G_{142}$	${ }^{4} G_{145}$						
m-Xylene	INS	P	INS	GP	${ }^{4} \mathbf{G}_{120}$	${ }^{4} G_{130}$	${ }^{4} \mathbf{G}_{134}$	${ }^{2.9} \mathbf{G}_{121}$						
p-Xylene	INS	GP	${ }^{4} \mathrm{G}_{108}$	${ }^{4} G_{120}$	${ }^{4} \mathrm{G}_{120}$	${ }^{2.2} \mathbf{G}_{110}$								
Mesitylene	INS	${ }^{1.2} \mathrm{G}_{103}$	${ }^{1.2} \mathbf{G}_{100}$	${ }^{1.2} \mathbf{G}_{101}$	${ }^{2.9} \mathrm{G}_{105}$									
Dioxane	GP	${ }^{4} G_{76}$	GP	${ }^{4} \mathrm{G}_{86}$	INS	${ }^{4} \mathrm{G}_{70}$	INS	GP	${ }^{4} \mathrm{G}_{62}$	${ }^{4} G_{90}$	${ }^{1.3} \mathbf{G}_{95}$	${ }^{1.5} \mathrm{G}_{79}$	${ }^{1.4} \mathrm{G}_{80}$	${ }^{3.3} \mathbf{G}_{88}$
EG	S	S	S	S	S	S	S	S	S	S	S	S	S	S
${ }^{\text {MGC }} \mathbf{G}_{\text {Tgel }}$ - Minimum Gelling Concentration Gel $_{\text {Gel dissociation temperature, }}, \mathbf{S}$ - Soluble, INS - Insoluble, GP - Gelatinous precipitate, \mathbf{C} - Crystal														

Table S2: Crystallography Information Table

Identification Code	FuA_9	FuA_10	FuA_11	FuA_12	FuA_14	FuA_15
Crystallizing solvent	$\begin{aligned} & \text { MeOH+DCM+Water } \\ & \text { +EtOAc } \end{aligned}$	DMF	$\begin{aligned} & \mathrm{MeOH}+\mathrm{DCM}+ \\ & \text { EtOAc } \end{aligned}$	DMF	MeOH+DMF	MeOH+DMF
CCDC No.	1868726	1868727	1868722	1868723	1868725	1868724
Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~F}$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~F}$	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{3}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{FN}_{4} \mathrm{O}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{FN}_{3} \mathrm{O}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{FN}_{2} \mathrm{O}_{4}$
Formula Weight	425.48	391.44	377.45	409.48	525.65	507.61
Temperature/K	296.15	296.15	100.09	99.98	115.14	105.94
Crystal System	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
Crystal Size/mm ${ }^{3}$	$0.24 \times 0.2 \times 0.12$	$0.32 \times 0.24 \times 0.18$	$0.23 \times 0.18 \times 0.12$	$0.3 \times 0.28 \times 0.26$	$0.24 \times 0.12 \times 0.08$	$0.2 \times 0.1 \times 0.07$
Space Group	P-1	P-1	P-1	P-1	P1	P-1
a/A	4.6735(7)	8.8655(11)	4.6593(2)	8.8667(6)	4.7844(2)	4.7775(4)
b/Å	10.5865(15)	9.0075(11)	10.5631(3)	9.0125(6)	10.4899(3)	10.4402(9)
c/i̊	17.880(3)	18.138(2)	19.8391(7)	20.1479(11)	21.3123(7)	45.660(3)
$\alpha{ }^{\prime}$	100.883(2)	87.057(2)	97.467(2)	89.377(2)	82.522(2)	88.427(3)
$\beta{ }^{0}$	96.135(2)	76.644(2)	92.052(3)	80.718(2)	87.079(2)	88.793(2)
$\gamma{ }^{\prime}{ }^{0}$	91.952(2)	88.318(2)	91.741(2)	88.288(2)	88.450(2)	88.556(3)
Volume/ \AA^{3}	862.4(2)	1407.1(3)	966.91(6)	1588.22(17)	1058.92(6)	2275.4(3)
Density ($\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$)	1.638	1.848	1.296	1.712	1.649	1.482
μ / mm^{-1}	0.125	0.138	0.775	0.128	0.936	0.103
Z	2	4	2	4	2	4
F(000)	454.0	832.0	404.0	876.0	564.0	1084.0
Radiation	MoK $\left.\alpha^{(\lambda=0.71073}\right)$	MoKa ($\lambda=0.71073$)	CuKa ($\lambda=1.54178)$	MoKa ($\lambda=0.71073$)	CuK ${ }^{(\lambda=1.54178)}$	MoKa ($\lambda=0.71073$)
2θ range for data collection/ ${ }^{\circ}$	3.924 to 52.228	4.528 to 49.692	8.448 to 137.098	4.522 to 60.056	8.378 to 118.102	4.462 to 49.086
Index ranges	$\begin{aligned} & -5 \leq h \leq 5,-13 \leq k \leq \\ & 13,-22 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -10 \leq h \leq 10,-10 \leq k \\ & \leq 10,-21 \leq 1 \leq 21 \end{aligned}$	$\begin{aligned} & -5 \leq h \leq 5,-12 \leq k \leq \\ & 12,-23 \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} & -12 \leq h \leq 12,-12 \leq k \leq \\ & 11,-28 \leq 1 \leq 27 \end{aligned}$	$\begin{aligned} & -5 \leq h \leq 5,-11 \leq k \leq \\ & 10,-22 \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} & -5 \leq h \leq 5,-12 \leq k \leq \\ & 12,-53 \leq 1 \leq 52 \end{aligned}$
Reflections collected	22159	33446	6661	20939	6122	19877
Independent reflections	$\begin{aligned} & 3370\left[R_{\text {int }}=0.0822,\right. \\ & \left.\mathbf{R}_{\text {sigma }}=0.0593\right] \end{aligned}$	$\begin{aligned} & 4881\left[R_{\text {int }}=0.0464,\right. \\ & \left.\mathbf{R}_{\text {sigma }}=0.0312\right] \end{aligned}$	$\begin{aligned} & 3367\left[R_{\text {int }}=0.0593,\right. \\ & \left.\mathbf{R}_{\text {sigma }}=0.0855\right] \end{aligned}$	$\begin{aligned} & 9083\left[R_{\text {int }}=0.0563,\right. \\ & \left.\mathbf{R}_{\text {sigma }}=0.0745\right] \end{aligned}$	$\begin{aligned} & 4231\left[R_{\text {int }}=0.0385,\right. \\ & \left.\mathbf{R}_{\text {sigma }}=0.0641\right] \end{aligned}$	$\begin{aligned} & 7568\left[R_{\text {int }}=0.0563,\right. \\ & \left.R_{\text {sigma }}=0.0818\right] \end{aligned}$
Data/restraints/para meters	3370/0/215	4881/0/321	3367/0/229	9083/0/357	4231/3/510	7568/0/238
Goodness of fit on \mathbf{F}^{2}	1.023	1.054	1.036	1.041	1.035	1.091
Final R indexes $[\mathrm{I}>=\mathbf{2} \boldsymbol{\sigma}(\mathrm{I})]$	$\begin{aligned} & R_{1}=0.0498, \mathrm{wR}_{2}= \\ & 0.0951 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0376, \mathrm{wR}_{2}= \\ & 0.0795 \end{aligned}$	$\begin{aligned} & R_{1}=0.0525, \mathrm{wR}_{2}= \\ & 0.1276 \end{aligned}$	$\begin{aligned} & R_{1}=0.0573, w R_{2}= \\ & 0.1429 \end{aligned}$	$\begin{aligned} & R_{1}=0.0468, \mathrm{wR}_{2}= \\ & 0.1125 \end{aligned}$	$\begin{aligned} & R_{1}=0.0910, \mathrm{wR}_{2}= \\ & 0.1886 \end{aligned}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.1002, \mathrm{wR}_{2}= \\ & 0.1179 \end{aligned}$	$\begin{aligned} & R_{1}=0.0636, \mathrm{wR}_{2}= \\ & 0.0925 \end{aligned}$	$\begin{aligned} & R_{1}=0.0828, \mathrm{wR}_{2}= \\ & 0.1482 \end{aligned}$	$\begin{aligned} & R_{1}=0.0980, w R_{2}= \\ & 0.1765 \end{aligned}$	$\begin{aligned} & R_{1}=0.0601, w R_{2}= \\ & 0.1260 \end{aligned}$	$\begin{aligned} & R_{1}=0.1512, \mathrm{wR}_{2}= \\ & 0.2123 \end{aligned}$
Largest diff. peak/hole/e \AA^{-3}	0.28/-0.26	0.21/-0.22	0.23/-0.28	0.39/-0.35	0.26/-0.23	0.63/-0.48
Flack parameter	-	-	-	-	0.4(3)	-

Figure S18: Amplitude Sweep Rheology Experiment of Some Selected Hydro and MS Gels.

Figure S19: Frequency Sweep Rheology Experiment of Some Selected Hydro and MS Gels.

Table S3: Average $\mathbf{G}^{\prime}, \mathbf{G}{ }^{\prime}$ and $\boldsymbol{\operatorname { t a n }} \delta$ values of the gels obtained from rheology

	Average G' (kPa)	Average G" (kPa)	$G^{\prime \prime} / G^{\prime}(\tan \delta)$
FuA-10 (MS)	21.157	4.890	0.231165
FuA-10 (HG)	19.791	10.264	0.518641
FuA-11 (MS)	23.336	9.113	0.390536
FuA-11 (HG)	17.277	9.384	0.543162
FuA-12 (MS)	18.465	6.820	0.369382
FuA-12 (HG)	15.544	8.837	0.568564
FuA-14 (MS)	23.538	5.058	0.21491
FuA-14 (HG)	56.176	27.004	0.480715
FuA-15 (MS)	6.371	1.362	0.213885
FuA-15 (HG)	21.952	8.941	0.40731
FuA-16 (MS)	12.166	2.186	0.179687
FuA-16 (HG)	28.580	6.262	0.21911
FuA-18 (MS)	1.763	0.271	0.153769
FuA-18 (HG)	38.745	7.436	0.191939

Figure S20(a): Characterization of gels (FuA-10, FuA-11, FuA-12): tube-inversion method.

Figure S20(b): Characterization of gels (FuA-14, FuA-15, FuA-16, FuA-18): tube-inversion method.

Figure S21(a): Morphology of the Gels (Hydro and MS gels of FuA-10, FuA-11, FuA-12) as observed in Transmission Electron Microscopy (TEM).

Figure S21(b): Morphology of the Gels (Hydro and MS gels of FuA-14, FuA-15, FuA-16, FuA-18) as observed in Transmission Electron Microscopy (TEM).

Figure S22: Cell viability assay (MTT Assay) done in Raw 264.7 cell line.

Figure S23(a): Cell viability assay (MTT Assay) done in HepG2 cell line.

Figure S23(b): Cell Migration assay (Scratch Assay) done in HepG2 cell line.

Figure S24: Cell viability assay (MTT Assay) done in B16F10 cell line.

Table S4(a): Table of comparison of the anticancer behaviour between the mother drug (5-Fu) and the salts (FuA-14 and FuA-15) in HepG2 Cell Line

Compounds	Concentration (mM)	\% of HepG2 cell death	IC50 in RAW 264.7 (mM)
5-Fu	0.1	48.0	0.03
5-Fu	0.5	96.0	0.03
FuA-14 (Salt)	0.1	97	0.03
FuA-15 (Salt)	0.1	93	0.03

Table S4(b): Table of comparison of the anticancer behaviour between the mother drug (5-Fu) and the salts (FuA-14 and FuA-15) in B16F10 Cell Line

Compounds	Concentration (mM)	\% of B16F10 cell death
5-Fu	0.02	92
FuA-14 (Salt)	0.02	26
FuA-15 (Salt)	0.02	91

Figure S25: The morphology images of cell upon treatment of 5-Fu, FuA-14 and FuA-15 in B16F10 cell line.

Figure S26: The morphology images of cell upon treatment of 5-Fu, FuA-14 and FuA-15 in HepG2 cell line.

Figure S27: NMR Data to prove the existence of FuA-15 in leached out solution $\left(\mathrm{D}_{2} \mathrm{O}\right)$.

Leaching of FuA-15 from the corresponding hydrogel

To probe the leaching of FuA-15 from its corresponding hydrogel, ${ }^{1} \mathrm{HNMR}$ experiments were performed. For this purpose, we prepared a $\mathrm{D}_{2} \mathrm{O}$ gel of FuA-15 ($2.5 \mathrm{wt} \%, 2 \mathrm{~mL}$) and on top of it, $2 \mathrm{~mL}_{2} \mathrm{O}$ was layered and kept at room temperature for 30 h . The top $\mathrm{D}_{2} \mathrm{O}$ layer was then subjected to ${ }^{1} \mathrm{H}$ NMR that clearly showed the existence of FuA-15 (Fig. S27).

Figure S28: ORTEP Plot of FuA-9 (50\% probability).

Table S5: Hydrogen Bonding Parameter table of FuA-9

Table S5 : Hydrogen Bonds for FuA-9				
D \quad H \quad A	d(D-H)/®	d(H..A)/®	d(D..A)/A	< D-H-A/ ${ }^{\circ}$
N3 H3A ${ }^{\text {O4 }}{ }^{1}$	0.890	1.865	2.743	168.87
N3 $33 \mathrm{~B} \quad \mathrm{O1}^{2}$	0.890	2.515	3.292	146.18
N3 H3B O^{3}	0.890	2.442	2.940	115.76
N3 H3C O4	0.890	1.924	2.812	175.59
C5 H5AO4 ${ }^{4}$	0.970	2.524	3.355	143.71
C5 H5B O3 ${ }^{5}$	0.970	2.429	3.295	148.49
C4 $\mathrm{H} 4 \mathrm{O} 3^{6}$	0.930	2.258	3.101	150.33
C7 H7AF1 ${ }^{7}$	0.970	2.587	3.278	128.37
C7 H7A O2 ${ }^{8}$	0.970	2.646	3.306	125.61
N1 H1 O1 ${ }^{9}$	0.968	1.822	2.789	177.38

Figure S29: ORTEP Plot of FuA-10 (50\% probability).

Table S6: Hydrogen Bonding Parameter table of FuA-10

Table S6 : Hydrogen Bonds for FuA-10				
D $\quad \mathbf{H} \quad \mathbf{A}$	d(D-H)/A	d(H..A)/®	d(D..A)/Å	< D-H-A/ ${ }^{\circ}$
N3 H3A O1	0.890	2.213	2.985	144.84
N3 H3A N1	0.890	2.376	3.013	128.57
N3 H3B O3 ${ }^{1}$	0.890	1.890	2.740	159.21
N3 H3C O4 ${ }^{2}$	0.890	1.996	2.811	151.66
N4 H4AO2 ${ }^{3}$	0.890	1.822	2.711	176.27
N4 ${ }^{\text {H4A }}$ N ${ }^{4}$	0.890	2.648	3.252	126.01
N4 H4BO1 ${ }^{5}$	0.890	1.938	2.805	164.00
N4 H4CO4	0.890	1.940	2.811	165.81
$\mathrm{C} 4 \mathrm{H} 4 \mathrm{O}^{6}$	0.930	2.339	3.264	172.92
C7 H7B Fl^{7}	0.970	2.608	3.520	156.86

Figure S30: ORTEP Plot of FuA-11 (50\% probability).
Table S7: Hydrogen Bonding Parameter table of FuA-11

C19

Figure S31: ORTEP Plot of FuA-12 (50\% probability).

Table S8: Hydrogen Bonding Parameter table of FuA-12

Table S8 : Hydrogen Bonds for FuA-12				
D $\quad \mathbf{H} \quad \mathbf{A}$	d(D-H)/A	d(H..A)/A	d(D..A)/A	<D-H-A/ ${ }^{\circ}$
N3 ${ }^{\text {H3A }}$ O3 ${ }^{1}$	0.910	1.962	2.804	152.99
N3 H3B O1	0.910	2.208	2.990	143.65
N3 H3B N1	0.910	2.372	3.013	127.40
N3 H3C O4 ${ }^{2}$	0.910	1.869	2.736	158.34
N4 H4AO3	0.910	1.924	2.813	165.16
N4 $44 \mathrm{~B} \quad \mathrm{O}^{3}$	0.910	1.804	2.713	176.65
N4 H4B $\mathrm{N1}^{4}$	0.910	2.642	3.254	125.31
$\mathrm{N} 4{\mathrm{H} 4 \mathrm{CO} 1^{5}}$	0.910	1.923	2.809	164.16
$\mathrm{C} 4 \quad \mathrm{H} 4 \quad \mathrm{O} 4{ }^{6}$	0.950	2.317	3.262	172.84
C7 H7B F1 ${ }^{7}$	0.990	2.602	3.532	156.35

Figure S32: ORTEP Plot of FuA-14 (50\% probability).

Table S9: Hydrogen Bonding Parameter table of FuA-14

Table S9 : Hydrogen Bonds for FuA-14				
D H A	d(D-H)/®	d(H..A)/A	d(D..A)/®	<D-H-A/ ${ }^{\circ}$
N2 H2 O5	0.880	1.974	2.854	177.42
N4 44	0.880	1.900	2.779	178.15
N5 H5A O7	0.910	1.882	2.776	167.07
N5 H5B O1 ${ }^{1}$	0.910	2.556	3.322	142.06
N5 H5B $\mathrm{O6}^{2}$	0.910	2.479	2.986	115.51
N5 H5C O7 ${ }^{3}$	0.910	1.938	2.845	174.68
N6 H6AO4 ${ }^{4}$	0.910	2.003	2.819	148.41
N6 H6BO2 ${ }^{5}$	0.910	2.644	3.123	113.72
N6 H6CO4	0.910	1.865	2.767	170.87
C10 H10O8 ${ }^{6}$	0.950	2.256	3.120	150.79
C11 H11AO4 ${ }^{\text { }}$	0.990	2.414	3.276	145.21
C11 H11BO8 ${ }^{8}$	0.990	2.383	3.290	152.03
C5H5DO3 ${ }^{9}$	0.990	2.374	3.280	151.95
C5H5EO7 ${ }^{10}$	0.990	2.513	3.349	142.02
C4H4AO3 ${ }^{11}$	0.950	2.239	3.105	151.24
C14H14BO8	0.990	2.459	3.403	159.31
C28H28BF1 ${ }^{12}$	0.990	2.528	3.467	158.35
C13 H13A F2 ${ }^{13}$	0.990	2.579	3.244	124.44
C27 H27B O3	0.990	2.615	3.352	131.23

${ }^{1}[\mathrm{x}, \mathrm{y}+1, \mathrm{z}],{ }^{2}[\mathrm{x}, \mathrm{y}+1, \mathrm{z}],{ }^{3}[\mathrm{x}+1, \mathrm{y}, \mathrm{z}],{ }^{4}[\mathrm{x}-1, \mathrm{y}, \mathrm{z}],{ }^{5}[\mathrm{x}-1, \mathrm{y}-1, \mathrm{z}],{ }^{6}[\mathrm{x}-1, \mathrm{y}, \mathrm{z}],{ }^{7}[\mathrm{x}-1, \mathrm{y}+1, \mathrm{z}$ $],{ }^{8}[\mathrm{x}-1, \mathrm{y}, \mathrm{z}],{ }^{9}[\mathrm{x}+1, \mathrm{y}, \mathrm{z}],{ }^{10}[\mathrm{x}+1, \mathrm{y}-1, \mathrm{z}],{ }^{11}[\mathrm{x}+1, \mathrm{y}, \mathrm{z}],{ }^{12}[\mathrm{x}-1, \mathrm{y}-1, \mathrm{z}],{ }^{13}[\mathrm{x}+1, \mathrm{y}+1, \mathrm{z}]$.

Figure S33: ORTEP Plot of FuA-15 (50\% probability).

Table S10: Hydrogen Bonding Parameter table of FuA-15

Table S10 : Hydrogen Bonds for FuA-15				
D \quad H \quad A	d(D-H)/A	d(H..A)/Å	d(D..A)/A	<D-H-A/ ${ }^{\circ}$
N4 H4A O5 ${ }^{1}$	0.880	1.931	2.810	177.94
N5 H5A Ol^{2}	0.910	2.519	3.259	138.78
N5 H5A O2 ${ }^{3}$	0.910	2.543	2.992	110.98
N5 \quad H5B $\mathrm{O4}^{4}$	0.910	1.867	2.773	173.94
N5 H5C O4	0.910	1.947	2.854	174.60
N6 H6A O8 ${ }^{5}$	0.910	1.924	2.828	172.36
N6 H6BO6 ${ }^{6}$	0.910	2.450	2.948	114.63
N6 H6BO5 ${ }^{7}$	0.910	2.512	3.259	139.55
N6 H6CO8	0.910	1.890	2.785	167.07
$\mathrm{N} 2 \mathrm{H} 2 \mathrm{O} 1^{8}$	0.880	1.930	2.809	176.94
C14 H14B $\mathrm{O3}^{9}$	0.990	2.398	3.340	158.72
$\mathrm{C} 4 \mathrm{H} 4 \quad \mathrm{O} 3^{10}$	0.950	2.244	3.106	150.46
C11 H11A O8 ${ }^{11}$	0.990	2.455	3.321	145.76
C11 H11BO7 ${ }^{12}$	0.990	2.346	3.248	151.00
C10 H10 O7 ${ }^{13}$	0.950	2.231	3.080	148.34
C5 H5D O3 ${ }^{14}$	0.990	2.414	3.313	150.63
C5 H5E O4 ${ }^{15}$	0.990	2.476	3.328	143.97
C29 H29A O7 ${ }^{16}$	0.990	2.611	3.179	116.55
${ }^{1}[-x+2,-y+1,-z+1],{ }^{2}[-x+1,-y+1,-z],{ }^{3}[x+1, y-1, z],{ }^{4}[x+1, y, z],{ }^{5}[x-1, y, z],{ }^{6}[x-1, y+1, z$				
$],{ }^{7}[-x+1,-y+2,-z+1],{ }^{8}[-x,-y+2,-z],{ }^{9}[x+1, y, z],{ }^{10}[x+1, y, z],{ }^{11}[-x+1,-y+2,-z+1],{ }^{12}[x-$				
$1, y, z],{ }^{13}[x-1, y, z],{ }^{14}[x+1, y, z],{ }^{15}[-x+1,-y+1,-z],{ }^{16}[x-1, y, z]$.				

