Supporting information

Anion exchange reaction: an effective approach to prepare alloyed Co-Fe bimetallic disulfide for improving electrocatalytic activity *Tongtong Li,[#] Shuaishuai Zhao,[#] Yongxin Lu, Zhijie Li, Zhida Gao,* and Yan-Yan Song* College of Sciences, Northeastern University, Shenyang 110004, China E-mail addresses: gaozd@mail.neu.edu.cn ; yysong@mail.neu.edu.cn*

Experimental

Reagents

Carbon cloth (CC) was purchased from CeTech Co., Ltd. Anhydrous cobalt chloride (CoCl₂, \geq 98.0 %) and Nafion (5.0 wt.%) were purchased from Sigma-Aldrich. Potassium ferricyanide (K₃[Fe(CN)₆], 99.5 wt.%) and urea (CO(NH₂)₂, 99 wt.%) were purchased from Sinopharm Group Chemical Reagent Co. Ltd. Pt/C (20 wt.% Pt on carbon) was purchased from Shanghai Macklin Biochemical Co., Ltd. All reagents are of analytical grade. All aqueous solutions were prepared in deionized (DI) water.

Synthesis of Co(CO₃)_{0.5}(OH)·0.11H₂O nanoneedles on CC

The CC was ultrasonicated for 10 min with acetone, ethanol, and deionized water. Then, the CC was immersed in a mixed solution of concentrated sulfuric acid and concentrated nitric acid with volume ratio of 1:3, and ultrasonicated for 2 h. Finally, the cleaned CC was washed with deionized water for several times and dried in air before use. The Co(CO₃)_{0.5}(OH)·0.11H₂O nanoneedles on CC (denoted as CCHH/CC) was synthesized by a facile hydrothermal method. Typically, the CC is placed vertically into a volumetric flask with a capacity of 88 ml, which contains an aqueous solution of 0.1 M CoCl₂ and 3.12 wt.% urea. Then, the container is sealed and heated at 90 °C for 8 h.

Synthesis of Co₂Fe(CN)₆·2H₂O nanocrystal on CCHH/CC

The Co₂Fe(CN)₆·2H₂O was prepared with a slight modification of the method reported previously.¹ The Co₂Fe(CN)₆·2H₂O nanocrystals (denoted as CFNH) was prepared via a simple anion exchange reaction. The as-formed CCHH/CC was immersed into a 0.1 M K₃[Fe(CN)₆] aqueous solution for anion exchange at 60 °C for 2 h. The resulted CFNH/CCHH/CC was collected washed with distilled water and then dried at 60 °C overnight in air.

Synthesis of FeS₂/CoS₂/CC

A tube furnace manufactured by Thermo Corporation of the United States (TF-55035KC-1) was used as an annealing apparatus for all the samples. The FeS₂/CoS₂/CC composite were obtained through annealing CFNH/CCHH/CC in a hydrogen sulfide atmosphere (10% H₂S, 90% Ar) at 450 °C for 10 min. The same synthesis step was used for the preparation of CoS₂/CC composite, but the precursor was replaced with CCHH/CC.

Characterizations

Surface morphology of samples was characterized using scanning electron microscopy (SEM Hitachi S4800, Japan) and transmission electron microscopy (TEM, JEOL 2000). Powder X-ray diffraction (XRD) patterns were collected using an X'Pert Pro MPD diffractometer (PANalytical) with Cu K α radiation. X-ray photoelectron spectroscopy (XPS) was performed on a Perkin-Elmer Physical Electronics 5600 spectrometer using Al K α radiation at 13 kV, and using the binding energy of C 1s at 284.6 eV as a reference.

Electrochemical measurements

The CHI660E electrochemical workstation (CH Instrument Co. Shanghai) was used for all electrochemical tests. Linear sweep voltammetry (LSV) was carried out with a typical three-electrode system in N₂-saturated 0.5 M H₂SO₄ at a scan rate of 5 mV s⁻¹ at room temperature. The Pt foil and saturated calomel electrodes (SCE) were used as counter and reference electrodes, respectively. Electrochemically inert polyimide tape was employed to define 2 x 1 cm x 1 cm area of the working electrode, which was immersed in the solution. The potential measured against SCE was converted to the potential versus the RHE by adding a value of (0.242 + 0.059 pH) V. All linear sweep voltammetry tests were performed with 90% iR compensation. Electrochemical impedance spectroscopy (EIS) was performed at -0.2 V, and applying a scanning frequency from 100 kHz to 10 Hz.

Fig. S1 SEM images of $FeS_2/CoS_2/CC$ prepared by different anion exchange time of 0

h (a), 0.5 h (b), 1 h (c), 1.5 (d) and 2 h (e, f).

Fig. S2 SEM images and corresponding EDX results of the products in different steps. (a) $Co(CO_3)_{0.5}(OH) \cdot 0.11H_2O/CC$ (CCHH) obtained by hydrothermal treatment, (b) CCHH after ion exchange for 2 h in 0.1 M K₃[Fe(CN)₆] solution, and (c) the resultant FeS₂/CoS₂/CC.

Fig.S3 The morphology of the samples treated with different concentration of $K_3[Fe(CN)_6]$. (a) SEM and (b) TEM images of the sample without $K_3[Fe(CN)_6]$ treatment (CoS₂/CC). Inset in (a) is the enlarged SEM image. SEM images of the samples treated with (c) 0.01 M, (d) 0.3 M, (e) 0.5 M and (f) 1 M $K_3[Fe(CN)_6]$, respectively. Inset in (f) is the SEM image in less magnification.

Fig.S4 SEM images and corresponding EDX results of the samples treated with different concentration of $K_3[Fe(CN)_6]$. (a) 0.01 M, (b) 0.3 M, (c) 0.5 M and (d) 1 M $K_3[Fe(CN)_6]$, respectively.

Fig. S5 XRD pattern of CoS₂/CC.

Fig. S6 XPS survey spectrum of FeS₂/CoS₂/CC.

Fig. S7 Additional TEM and HR-TEM image of FeS₂/CoS₂/CC.

Fig. S8 Additional STEM image and corresponding EDX mapping of Co, Fe, S, and O elements in FeS_2/CoS_2 nanocarystals.

Fig. S9 Polarization curves of $FeS_2/CoS_2/CC$ prepared with different hydrothermal time in the first step.

Fig. S10 Polarization curves of $FeS_2/CoS_2/CC$ prepared with different anion exchange

time in second-step.

Fig.S11 Cyclic voltammograms (CVs) of samples treated with (a) 0 M, (b) 0.01 M, (c) 0.1 M, (d) 0.3 M, (e) 0.5 M and (f) 1 M K₃[Fe(CN)₆], respectively. (g) The calculated values of the double layer capacitance (C_{dl}). HER polarization curves of the samples in N₂-saturated 0.5 M H₂SO₄ normalized by geometric area (h) and ECSA (i), respectively.

The specific capacitance can be converted into an ECSA using the specific capacitance value for a flat standard with 1 cm² of real surface area. The specific capacitance for a flat surface is generally found to be in the range of 20-60 μ F cm⁻². 40 μ F cm⁻² is assumed for a flat surface in the following calculations of TOF.

$$\operatorname{Area}_{ECSA}^{\operatorname{FeS}_2/\operatorname{CoS}_2/\operatorname{CC}} = \frac{9.86 \ mFcm^{-2}}{40 \ \mu Fcm^{-2} \ per \ cm_{ECSA}^2} = 246.5 \ cm_{ECSA}^2$$
$$\operatorname{Area}_{ECSA}^{\operatorname{CoS}_2/\operatorname{CC}} = \frac{8.27 \ mFcm^{-2}}{40 \ \mu Fcm^{-2} \ per \ cm_{ECSA}^2} = 206.8 \ cm_{ECSA}^2$$

Fig. S12 Nyquist plots of (a) CoS_2/CC and (b) $FeS_2/CoS_2/CC$ at -200 mV (vs. RHE).

Table.S1 The atomic concentration of the elements in the $FeS_2/CoS_2/CC$.

Atomic Concentration of FeS₂/CoS₂/CC by XPS C1s O1s S2p Fe2p Co2p 55.76 13.26 23.34 3.95 3.69

Spot#	d-Spacing (nm)	Rec. Pos. (1/nm)	Degrees to Spot 1	Facet
1	0.2778	3.6	0	(200)
2	0.1964	5.093	36.75	(220)
3	0.3154	3.171	80.26	(111)
4	0.2268	4.409	135.1	(211)

Table.S2 The lattice spacing parameters of the cubic pyrite phase crystal.

	1		-			
Catalyst	Mass loading (mg cm ⁻²)	C _{dl} (mF cm ⁻²)	Tafel slope (mV decade ⁻¹)	Current Density (j, mA cm ⁻²)	Overpotenti al at the correspondi ng j (η mV)	Refer ence
CoS ₂ -MoS ₂ /CN Ts	~0.35	/	67	80	240	[2]
NiP-MoS ₂	/	/	76	40	250	[3]
Zn-Co-S/TM	1.0	28.58	164	20	238	[4]
CoS ₂ /GO-5%	/	/	285	100	350	[5]
MoS ₂ /CoS ₂ /CC	18.6	7.04	73.4	100	240	[6]
CoS ₂ Pyramid/Ti	/	3.42± 0.09	~72	~65	~260	[7]
Ag ₂ S/CuS	12.06	/	75	10	200	[8]
NiCu-P	65	/	37	10	226	[9]
$(Fe_{0.48}Co_{0.52})S_2$	/	3.74	47.5	10	196	[10]
FeCo@N-graph ene	0.285	/	74	10	262	[11]
MoS ₂ -WS ₂ Heterostructures	/	/	72	10	129	[12]
Ti ₃ C ₂ NFs	0.3	21	97	10	169	[13]
M-MoS ₂ nanopetals	0.1	10.05	44	10	210	[14]
MoP/CNT	1	54	51.6	10	114	[15]
	ļ			50	~200	
FeS ₂ /CoS ₂ /CC	0.91	9.86	57	100	205	This work

Table.S3 Comparison of HER performance of $FeS_2/CoS_2/CC$ in acid media withrecently well-developed HER electrocatalysts.

Supplement References

H. T. Bui, D. Y. Ahn, N. K. Shrestha, M. M. Sung, J. K. Lee and S.-H. Han, *J. Mater. Chem. A*, 2016,
4, 9781-9788.

 Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, Appl. Surf. Sci., 2016, 384, 51-57.

3. Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu and C.-G. Liu, *Appl. Surf. Sci.*, 2016, **383**, 276-282.

4. Y. Liang, Q. Liu, Y. Luo, X. Sun, Y. He and A. M. Asiri, *Electrochim. Acta*, 2016, 190, 360-364.

5. W. Xing, Y. Zhang, Q. Xue and Z. Yan, *Nanoscale Res. Lett.*, 2015, 10, 488.

 J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang, L. Li and S. Chen, J. Mater. Chem. A, 2015, 3, 22886-22891.

H. Zhang, Y. Li, G. Zhang, P. Wan, T. Xu, X. Wu and X. Sun, *Electrochim. Acta*, 2014, 148, 170-174.

8. H. Ren, W. Xu, S. Zhu, Z. Cui, X. Yang and A. Inoue, *Electrochim. Acta*, 2016, 190, 221-228.

 M. Asnavandi, B. H. R. Suryanto, W. Yang, X. Bo and C. Zhao, ACS Sustainable Chem. Eng., 2018, 6, 2866-2871.

10. M. S. Faber, M. A. Lukowski, Q. Ding, N. S. Kaiser and S. Jin, J. Phys. Chem. C, 2014, 118, 21347-21356.

11. Y. Yang, Z. Lun, G. Xia, F. Zheng, M. He and Q. Chen, *Energy Environ. Sci*, 2015, 8, 3563-3571.

 D. Vikraman, S. Hussain, K. Akbar, L. Truong, A. Kathalingam, S.-H. Chun, J. Jung, H. J. Park and H.-S. Kim, ACS Sustainable Chem. Eng., 2018, 6, 8400-8409.

13. W. Yuan, L. Cheng, Y. An, H. Wu, N. Yao, X. Fan and X. Guo, ACS Sustainable Chem. Eng., 2018,

6, 8976-8982.

 J. Wang, N. Wang, Y. Guo, J. Yang, J. Wang, F. Wang, J. Sun, H. Xu, Z.-H. Liu and R. Jiang ACS Sustainable Chem. Eng., 2018, 6, 13435-13442.

15. A. Adam, M. H. Suliman, H. Dafalla, A. R. Al-Arfaj, M. N. Siddiqui and M. Qamar, ACS Sustainable Chem. Eng., 2018, 6, 11414-11423.