Electronic Supplementary Material (ESI) for ChemComm.

B_4C nanosheets decorated with in situ-derived boron-doped graphene quantum dots for high-efficiency ambient N_2 fixation

Wei-Bin Qiu,^a Yu-Xi Luo,^a Ru-Ping Liang,^{*a} Jian-Ding Qiu^{*ab} and Xing-Hua Xia^{*c}

^a College of Chemistry, Nanchang University, Nanchang 330031, China.

^b College of Materials and Chemical Engineering, Pingxiang University, Pingxiang

337055, China.

^c State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry

and Chemical Engineering, Nanjing University, Nanjing 210023, China.

*Corresponding authors. Tel/Fax: +86-791-83969518. E-mail: rpliang@ncu.edu.cn; jdqiu@ncu.edu.cn; xhxia@nju.edu.cn.

Experimental section

Materials. Sodium nitroferricyanide ($C_5FeN_6Na_2O$) and Nafion 211 membrane were provided by Sigma-Aldrich. Sodium hydroxide (NaOH), salicylic acid ($C_7H_6O_3$), sodium salicylate ($C_7H_5O_3Na$), sodium hypochlorite (NaClO), sodium sulfate (Na_2SO_4), nitric acid (HNO_3), sulfuric acid (H_2SO_4), para-(dimethylamino) benzaldehyde ($C_9H_{11}NO$), hydrochloric acid (HCl), ethanol (C_2H_5OH), and hydrazine (N_2H_4) were purchased from Sinopharm Chemical Reagent Co. Ltd. (China). Boron carbide (B_4C) and Ammonium chloride-¹⁵N (¹⁵NH_4Cl) were purchased from Aladdin Ltd. Dimethyl Sulfoxide- D_6 (DMSO- d_6 , 99.9%) was purchased from Adamas Reagent, Ltd. All the chemical regents were of analytical grade and used as received without further purification. Deionized water was purified through a Millipore Milli-Q system.

*Preparation of B*₄*C nanosheet.* A 4 g bulk B₄C was dispersed in 100 mL ethanol and stripped by ultrasonic cell disruptor for 1 h. Subsequently, the resulting dispersion was centrifuged for 10 min at 3000 rpm and the supernatant containing B₄C nanosheet was decanted gently. The product was dried in a vacuum at 60 °C.

*Preparation of B*₄*C-BGQDs.* B₄*C-BGQDs was fabricated by in situ formation of* BG on B₄C nanosheets through a structural conversion way followed by cutting of BG into BGQDs. The obtained B₄C nanosheets were subjected to heat treatment (1600 °C) using a single-zone tubular furnace in an inert atmosphere (N₂ gas atmosphere) for 3 h, and were then allowed to cool slowly to room temperature. The BG was cutted into BGQDs by a hydrothermal cutting process.¹ Typically, the as-made powder was first refluxed in 40% HNO₃ for 24 h; after filtration and water washing to neutral, the product was dried in a vacuum at 60 °C. Then, the product was heated to 300 °C with a heating rate of 5 °C/min and then maintained at 300 °C for 2 h in a tube furnace under an argon atmosphere. The sample was oxidized with concentrated H₂SO₄ and HNO₃ (volume ratio 1:3) for 17 h under mild ultrasonication without any pausing. The solution was separated and collected by centrifugation (5000 rpm for 20 min), followed by washing with ethanol, and then redispersed in 40 mL of ultrapure water. The pH was adjusted to 8 with NaOH. The solution was then put into a poly(tetrafluoroethylene) (Teflon)-lined autoclave and heated at 200 °C for 11.5 h.

The precipitate was collected and washed with water and ethanol for several times by centrifugation and dried at 60 °C. The supernatant containing BGQDs was further characterized by fluorescence spectrum and atomic force microscopy (AFM) to confirm the formation of BGQDs.

Characterization. Fluorescence spectrum was obtained using an F-7000 fluorescence spectrometer (Hitachi, Japan). AFM image was collected on a Bruker Multimode 8 AFM/SPM (Bruker, Germany) system with NanoScope Analysis Version 1.40 software. The X-ray diffraction analysis (XRD) was performed on a Bruker D8 Advance X-ray diffractometer with Cu K α (α = 1.5405 Å) radiation. JEOL2010 transmission electron microscope (TEM, Japan) was used to characterize the size and morphology of B₄C-BGQDs. Raman spectrum was collected using a Renishaw InVia micro-Raman (Renishaw, UK) system with the excitation wavelength at 514 nm. The absorbance data of spectrophotometer were measured on an UV-2450 spectrophotometer (Shimadzu, Japan). X-ray photoelectron spectroscopy (XPS) characterizations were measured by a VG Multilab 2000X instrument (Thermal Electron, USA). N₂ temperature programmed desorption (N₂-TPD) was measured with a Micromeritics AutoChem 2920 apparatus to ascertain the N₂ adsorption ability of the catalysts. Briefly, 40 mg of the catalyst was first pre-treated with pure He at a flow rate of 50 mL·min⁻¹ at 120 °C for 30 min, followed by cooling down to room temperature under the same atmosphere and then dosed with pure N₂. To remove residual N₂, the catalyst was purged with pure He at a flow rate of 50 mL·min⁻¹ for 30 min. The N₂-TPD measurement was subsequently performed up to 600 °C at a heating rate of 10 °C·min⁻¹ in pure He. A gas chromatograph (SHIMADZU, GC-2014C) equipped with MolSieve 5A column and Ar carrier gas was used for the periodic quantification of H₂ during NRR tests using B₄C-BGQDs/CPE

Electrochemical measurement. The reduction of N₂ gas (99.99%) was carried out in a two-compartment cell under ambient condition, which was separated by a Nafion 211 membrane. Before NRR tests, the membrane was protonated by first boiling in ultrapure water for 1 h and treating in H₂O₂ (5%) aqueous solution at 80 °C for another 1 h. Finally, the membrane was treated in 0.5 M H₂SO₄ at 80 °C for 3 h and in

water for 6 h. Electrochemical measurements were performed with an Iviumstat electrochemical workstation (Eco Chemie, Netherlands) in a standard three-electrode system using B₄C-BGQDs as the working electrode, Ag/AgCl as the reference, and a graphite rod as the counter electrode. All experiments were carried out at room temperature (25 °C). To acquire the ESA of the working electrodes, their roughness factor (Rf) should be obtained firstly according to the equation: ESA=R_fS, where S was generally equal to the geometric area of carbon paper electrode (In this work, S=1 cm⁻²). The R_f was determined by the relation Rf= $C_{dl}/30 \mu F \text{ cm}^{-2}$ based on the doublelayer capacitance (C_dl) of a smooth metal-free surface (30 $\mu F~cm^{-2}).^2$ The C_dl was determined by measuring the capacitive current associated with double-layer charging from the scan-rate dependence of cyclic voltammetric stripping. For this, the potential window of cyclic voltammetric stripping was -0.25 V to -0.15 V (0.1 M HCl solution). The scan rates were 10 mV s⁻¹, 20 mV s⁻¹, 50 mV s⁻¹, 100 mV s⁻¹. The C_{dl} was estimated by plotting the $\Delta j = (j_a - j_c)$ at -0.2 V (where j_c and j_a are the cathodic and anodic current densities, respectively) against the scan rate, in which the slope was twice that of C_{dl}.³ Electrochemical impedance spectroscopy (EIS) tests were performed in a 0.1 M HCl solution at -0.45 V in the frequency range from 0.1 to 10⁶ Hz. Linear sweep voltammogram (LSV) tests were performed in a 0.1 M HCl solution at a scan rate of 5 mV s⁻¹. The provided LSV curves were the steady-state ones after several cycles. For N₂ reduction experiments, the cathode chamber was first purged with N₂ for 30 min before measurement to form N₂-saturated solution, then conducted in 0.1 M HCl with continuous N_2 bubbling. All potentials (E) in this study were recorded on a reversible hydrogen electrode (RHE) by the equation:

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059 \text{ pH} + 0.256 \text{ V}$$
(S-1)

Determination of NH_3 . The concentration of produced NH_3 was determined by the indophenol blue method.⁴ In detail, 2 mL HCl electrolyte was taken from the cathodic chamber, and then 2 mL of 1 M NaOH solution containing 5% $C_7H_6O_3$ and 5% $C_7H_5O_3Na$ were added into this solution. Subsequently, 1 mL of 0.05 M NaClO and 0.2 mL of 1% $C_5FeN_6Na_2O\cdot 2H_2O$ were added into the above solution. After standing

at room temperature for 2 h, UV-Vis absorption spectrum was measured at a wavelength of 655 nm. The concentration-absorbance curves were calibrated using the standard NH₃ solution with a series of concentrations. The fitting curve (Fig. S5, y = 0.330x + 0.009, R² = 0.999) shows good linear relation of the absorbance value with NH₃ concentration by three times independent calibrations.

Determination of N_2H_4 . The N₂H₄ concentration in the electrolyte was estimated by the method of Watt and Chrisp.⁵ In brief, a mixture solution containing C₉H₁₁NO (5.99 g), concentrated HCl (30 mL) and C₂H₅OH (300 mL) was used as a color reagent. Then, 5 mL of electrolyte after electrolysis was added into the 5 mL of above color reagent with stirring at room temperature for 20 min. The absorbance of the resulting solution was measured by an UV-Vis spectrophotometer at a wavelength of 455 nm. The concentration-absorbance curve was calibrated using standard N₂H₄ solutions with a series of concentrations (0–0.6 µg ml⁻¹) for three independent calibrations. The fitting curve (Fig. S6 , y = 0.900x + 0.026, R² = 0.999) shows good linear relation of absorbance value with N₂H₄ concentration by three times independent calibrations.

¹⁵N₂ Isotope Labeling Experiments. The isotopic labeling experiment was carried out using ¹⁵N₂ as the feeding gas (Sigma-Aldrich, 98 atom % ¹⁵N₂) with 0.1 M HCl electrolyte. After ¹⁵N₂ electroreduction for 2 h at -0.45 V (vs. RHE), the electrolyte was taken out and concentrated to 1 mL by a rotary evaporator at 70 °C. Afterwards, 0.9 mL of the resulting solution was taken out and mixed with 0.1 mL DMSO-*d*₆ as an internal standard for ¹H nuclear magnetic resonance measurement (¹H NMR, Bruker Avance III 600 MHz).

*Calculations of NH*₃ *yield and Faradaic efficiency (FE)*. The FE for N₂ reduction was defined as the amount of electric charge used for synthesizing NH₃ divided by the total charge passed through the electrodes during the electrolysis. The total amount of NH₃ produced was measured using a colorimetric method. Assuming three electrons were needed to produce one NH₃ molecule, the rate of NH₃ formation (${}^{\nu}_{NH_3}$) was calculated using the following equation:

$$v_{\rm NH_3} = \frac{C_{\rm NH_3} \times \rm V}{t \times m_{\rm cat.}}$$
(S-2)

The FE for NH₃ formation (FE_{NRR}) could be calculated as follows:

$$FE_{NRR} = \frac{3 \times F \times C_{NH_3} \times V}{17 \times Q}$$
(S-3)

where, F is the Faraday constant, C_{NH_3} is the measured NH₃ concentration, V is the volume of the HCl electrolyte for NH₃ collection, t is the reduction time (2 h) and $m_{cat.}$ is the catalyst loading mass, Q is the total charge passed through the electrode (C). FE for H₂ (FE_{HER}) was calculated according to following equation:

$$FE_{HER} = 2 \times F \times n/Q \tag{S-4}$$

where F is the Faraday constant, n is the actually produced H_2 (mol), and Q is the total charge passed through the electrode (C).

Fig. S1. Photoluminescence spectrum of BGQDs with a 310 nm excitation beam.

Fig. S2. AFM image of the dispersive BGQDs deposited on a freshly cleaved mica. The insets show a particle size histogram (left inset) and the height distribution of the BGQDs (right inset). The average particle size of BGQDs is about 10 nm.

Fig. S5. Absolute calibration of the indophenol blue method using ammonium chloride solutions with a series of NH_3 concentrations as standard. (a) UV-Vis absorption spectra of indophenol assays with NH_3 after incubated at room temperature

for 2 h. (b) Calibration curve (y = 0.330x + 0.009, $R^2 = 0.999$) used for estimation of NH₃. The inset in (b) shows the chromogenic reaction of indophenol indicator with NH₃.

Fig. S6. Absolute calibration of the Watt and Chrisp method for estimating N_2H_4 concentration, using N_2H_4 solutions with known concentration as standard. (a) UV-Vis absorption spectra of various N_2H_4 concentration after incubated at room temperature for 20 min. (b) Calibration curve (y = 0.900x + 0.026, R² = 0.999) used for calculation of N_2H_4 concentration. The inset in (b) shows the chromogenic reaction of para-dimethylamino-benzaldehyde indicator with N_2H_4 ·H₂O.

Fig. S7. (a) Linear sweep voltammograms (sweep rate 5 mV s⁻¹) of B_4C nanosheets/CPE and B_4C -BGQDs/CPE electrode recorded in N₂-saturated and Ar-saturated 0.1 M HCl solution respectively. (b) A magnified view of the dotted line part in (a).

Fig. S8. (a) Gas chromatography (GC) spectra of as-generated gas for the NRR on B_4C -BGQDs/CPE catalyst in N₂-saturated 0.1 M HCl at various potentials, (b) Amounts of H_2 and (c) the calculated FEs of hydrogen evolution reaction (HER) accordingly.

Fig. S9. UV-Vis absorption spectra of the electrolytes stained with para-(dimethylamino) benzaldehyde indicator after electrolysis at a series of potentials for 20 min.

Fig. S10. CV curves for (a) B_4C nanosheets/CPE and (b) B_4C -BGQDs/CPE at scan rates of 10, 20, 50, and 100 mV s⁻¹. (c) Corresponding capacitive currents at -0.2 V as a function of scan rate for B_4C nanosheets/CPE and B_4C -BGQDs/CPE. (d) Nyquist plots of B_4C nanosheets/CPE and B_4C -BGQDs/CPE at -0.45 V in the frequency

range from 0.1 to 10^{6} Hz. Inset shows the equivalent circuit used to model the impedance data. All experiments were carried out in 0.1 M HCl.

Fig. S11. N₂-TPD profiles of B₄C and B₄C-BGQDs.

To verify the effective NH₃ molecules detected mainly from the electrocatalyzed conversion of N₂ over B₄C-BGQDs/CPE, some necessary control experiments were carried out. Specifically, we performed electrolysis in N₂-saturated 0.1 M HCl solution at an open circuit potential and in Arsaturated electrolyte at -0.45 V (Fig. S12). Specifically, no apparent NH₃ is detected in the electrolyte after two hours of electrolysis when N₂ is replaced by Ar and at open circuit potential, indirectly indicating that the detected NH₃ stems only from NRR catalyzed by B₄C-BGQDs/CPE. Moreover, the time-dependent experiment shows that the production of NH₃ actually increases with the reaction time, further confirming that NH₃ molecules mainly originate from N₂ (Fig. S13). Furthermore, ¹⁵N isotopic labeling experiment was performed as an alternative method to verify the N source of the produced NH₃ in 0.1 M HCl electrolyte. A triplet coupling for ¹⁴NH₄⁺ and a doublet coupling for ¹⁵NH₄⁺ in the ¹H nuclear magnetic resonance (1H NMR) spectra are used to distinguish them. As shown in Fig. S14, only ¹⁵NH₄⁺ was observed in the electrolyte when ¹⁵N₂ was supplied as the feeding gas, and no NH₄⁺ was detected when Ar was supplied, which are consistent with the control experiments and confirm that the NH₃ was produced by B₄C-BGQDs/CPE-BGQDs/CPE-catalyzed electroreduction of N₂.

Fig. S12. UV-Vis absorption spectra of the electrolytes stained with indophenol indicator for B_4C -BGQDs/CPE under different conditions. (Color code: black curve, pure electrolyte solution; red curve: N₂-saturated solution at open circuit potential for 2 h; blue dotted curve: electrolysis in Ar-saturated solution at -0.45 V for 2 h; pink curve: electrolysis in N₂-saturated solution at -0.45 V for 2 h.)

Fig. S13. (a) UV-vis absorption spectra of HCl electrolyte after electrolysis on B_4C -BGQDs/CPE stained with indophenol indicator after charging for different interval times at -0.45 V. (b) The corresponding curve of NH₃ amount *vs*. reaction time in 0.1 M HCl at -0.45 V.

Fig. S14. ¹H NMR spectra were obtained for the post-electrolysis 0.1 M HCl electrolytes with ${}^{15}N_2$, ${}^{14}N_2$, or Ar as the feeding gas. In the ¹H NMR spectra, a doublet coupling for ${}^{15}NH_4^+$ and a triplet coupling for ${}^{14}NH_4^+$ were distinguished for the ${}^{15}N_2$ - and ${}^{14}N_2$ -saturated electrolytes after electrolysis, confirming that the NH₃ was produced from the feeding gas. No apparent signals were observed when the electrolyte was bubbled with Ar, indicating a negligible amount of background NH₃ from the catalyst, the electrolyte or the environment, which is consistent with the control experiment using the indophenol blue method in Fig. S8.

Fig. S15. (a) Cycling test of B₄C-BGQDs/CPE at -0.45 V. (b) Chronoamperometry curve of B₄C-BGQDs/CPE for NRR at -0.45 V for 20 h.

Fig. S16. (a) Chronoamperometry curve of B_4C -BGQDs/CPE after 20-h electrolysis at -0.45 V. (b) UV-Vis absorption spectrum of the corresponding electrolyte.

Table S1. Comparison of the electrocatalytic N_2 reduction performance for B_4C nanosheet with other recently reported the-state-of-art electrocatalysts under ambient conditions.

Catalyst	Electrolyte	$V_{ m NH3}$	FE (%)	Potential (V vs. RHE)	Ref.				
Metal-free NRR electrocatalysts									
B ₄ C-BGQDs/CPE	0.1 M HCl	28.6 μg h ⁻¹ mg ⁻¹	16.7	V _{NH3} : -0.45	This				
		2.86 μg h ⁻¹ cm ⁻²		FE: -0.35	work				
B ₄ C/CPE	0.1 M HCl	$26.57 \ \mu g \ h^{-1} \ mg^{-1}$	15.95	-0.75	6				
Boron-doped graphene	$0.05 \text{ M} \text{ H}_2 \text{SO}_4$	9.8 $\mu g h^{-1} cm^{-2}$	10.8	-0.5	7				
PCN-NVs	0.1 M HCl	$8.09 \ \mu g \ h^{-1} \ mg^{-1}$	11.59	-0.2	8				
Black phosphorus	0.01 M HC1	21 27	5.07	V _{NH3} : -0.7	9				
nanosheets	0.01 M HCI	51.57 μg n ² mg ²		FE: -0.6					
NCM	0.1 M HCl	8 μg h ⁻¹ cm ⁻²	5.2	V _{NH3} : -0.3	10				
				FE: -0.2					
CC-450	0.1 M Na ₂ SO ₄	15.95 ug h-1 am-2	6.92	0.2	11				
	$+0.02 \text{ M} \text{H}_2 \text{SO}_4$	13.85 µg li · cili ²		-0.5					
NPC-500	$0.005 \text{ M} \text{H}_2 \text{SO}_4$	$22.3 \ \mu g \ h^{-1} \ cm^{-2}$	9.98	-0.4	12				
PEBCD/C	0.5 M Li ₂ SO ₄	$1.58 \ \mu g \ h^{-1} \ cm^{-2}$	2.85	-0.5	13				
N-doped porous carbon	$0.05 \text{ M H}_2\text{SO}_4$	$23.80 \ \mu g \ h^{-1} \ mg^{-1}$	1.42	-0.9	14				
ZIF-derived carbon	0.1 M KOH	57.8 μg h ⁻¹ cm ⁻²	10.20	-0.3	15				
N-doped carbon	0.25 M LiClO ₄	97.18 μ g h ⁻¹ cm ⁻²	11.56	-1.19	16				
nanospikes									
Boron Nanosheet	0.1 M Na ₂ SO ₄	$13.22 \ \mu g \ h^{-1} \ mg^{-1}$	4.04	-0.8	17				
S dots-graphene	0.5 M LiClO4	28.56 μ g h ⁻¹ mg ⁻¹	7.07	0.95	18				
nanohybrid				-0.85					
BCN	0.1 M HCl	7.75 μg h ⁻¹ mg ⁻¹	13.79	-0.3	19				
Metal-based NRR electrocatalysts									
TA-reduced Au/TiO ₂	0.1 M HCl	21.4 µg h ⁻¹ mg ⁻¹	8.11	-0.2	20				
α-Au/CeO _x -RGO	0.1 M HCl	8.31 µg h ⁻¹ mg ⁻¹	10.1	-0.2	21				

AuHNCs	0.5 M LiClO ₄	3.90 µg h ⁻¹ cm ⁻²	30.2	<i>V</i> _{NH3} : -0.5	22
				FE: -0.4	
Ag-Au@ZIF	THF-based electrolyte	$0.61 \ \mu g \ h^{-1} \ cm^{-2}$	18	N/A	23
Pd/C	0.1 M PBS	$4.5 \ \mu g \ h^{-1} \ mg^{-1}$	8.2	0.1	24
Ru/C	2 M KOH	$0.21 \ \mu g \ h^{-1} \ cm^{-2}$	0.28	-1.1	25
Ru SAs/N-C	$0.05 \text{ M H}_2\text{SO}_4$	120.9 µg h ⁻¹ mg ⁻¹	29.6	-0.2	26
BiNCs/CB/CP	K ₂ SO ₄ (pH=3.5)	$3400 \ \mu g \ h^{-1} \ mg^{-1}$	66	-0.6	27
CoO QD/RGO	0.1 M Na ₂ SO ₄	21.5 μg h ⁻¹ mg ⁻¹	8.3	-0.6	28
Fe _{SA} –N–C	0.1M KOH	$7.48 \ \mu g \ h^{-1} \ mg^{-1}$	56.55	0	29

References

- 1 L. Zhang, Z.-Y. Zhang, R.-P. Liang, Y.-H. Li and J.-D. Qiu, *Anal. Chem.*, 2014, **86**, 4423–4430.
- A. Chakraborty, R. Devivaraprasad, B. Bera and M. Neergat, *Phys. Chem. Chem. Phys.*, 2017, **19**, 25414–25422.
- 3 S. Gao, X. Jiao, Z. Sun, W. Zhang, Y. Sun, C. Wang, Q. Hu, X. Zu, F. Yang and S. Yang, *Angew. Chem., Int. Ed.*, 2016, 55, 698–702.
- 4 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 5 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 6 W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui, B. Tang and X. Sun, *Nat. Commun.*, 2018, **9**, 3485.
- 7 X. M. Yu, P. Han, Z. X. Wei, L. S. Huang, Z. X. Gu, S. J. Peng, J. M. Ma and G. F. Zheng, *Joule*, 2018, 2, 1610–1622.
- 8 C. D. Lv, Y. M. Qian, C. S. Yan, Y. Ding, Y. Y. Liu, G. Chen and G. H. Yu, *Angew. Chem.*, *Int. Ed.*, 2018, *57*, 10246–10250.
- 9 L. Zhang, L.-X. Ding, G.-F. Chen, X. Yang and H. Wang, *Angew. Chem., Int. Ed.*, 2019, 58, 2612–2616.
- H. Wang, L. Wang, Q. Wang, S. Ye, W. Sun, Y. Shao, Z. Jiang, Q. Qiao, Y. Zhu, P. Song, D. Li, L. He, X. Zhang, J. Yuan, T. Wu and G. A. Ozin, *Angew. Chem., Int. Ed.*, 2018, 57, 12360–12364.
- 11 W. Li, T. Wu, S. Zhang, Y. Liu, C. Zhao, G. Liu, G. Wang, H. Zhang and H. Zhao, *Chem. Commun.*, 2018, 54, 11188–11191.
- 12 C. Zhao, S. Zhang, M. Han, X. Zhang, Y. Liu, W. Li, C. Chen, G. Wang, H. Zhang and H. Zhao, *ACS Energy Lett.*, 2019, **4**, 377–383.
- 13 G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- 14 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
- 15 S. Mukherjee, D. A. Cullen, S. Karakalos. K. X. Liu, H. Zhang, S. Zhao, H. Xu, K. L. More, G. F. Wang and G. Wu, *Nano Energy*, 2018, 48, 217–226.
- Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, *Sci. Adv.*, 2018, 4, e1700336.

- 17 X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang and X. Sun, ACS Catal., 2019, 9, 4609–4615.
- 18 H. Y. Chen, X. J. Zhu, H. Huang, H. B. Wang, T. Wang, R. B. Zhao, H. G. Zheng, A. M. Asiri, Y. L. Luo and X. P. Sun, *Chem. Commun.*, 2019, 55, 3152–3155.
- 19 C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou, Y. Li and S. Wang, *Small*, 2019, 15, 1805029.
- 20 M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1606550.
- 21 S. Li, D. Bao, M. Shi, B. Wulan, J. Yan and Q. Jiang, Adv. Mater., 2017, 29, 1700001.
- M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, *Nano Energy*, 2018, 49, 316–323.
- 23 H. K. Lee, C. S. L. Koh, Y. H. Lee, C. Liu, I. Y. Phang, X. Han, C.-K. Tsung and X. Y. Ling, *Sci. Adv.*, 2018, 4, eaar3208.
- 24 J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, 9, 1795.
- 25 V. Kordali, G. Kyriacou and C. Lambrou, *Chem. Commun.*, 2000, **0**, 1673–1674.
- 26 Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng, Adv. Mater., 2018, 30, 1803498.
- Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang and C.-H. Yan, *Nat. Catal.*, 2019, 2, 448–456.
- 28 K. Chu, Y.-p. Liu, Y.-b. Li, H. Zhang and Y. Tian, J. Mater. Chem. A, 2019, 7, 4389– 4394.
- 29 M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong and C. Yan, *Nat. Commun.*, 2019, 10, 341.