Ligand-Controlled Switch in Diastereoselectivities: Catalytic Asymmetric Construction of Spirocyclic Pyrrolidineazetidine/oxe(thie)tane Derivatives

Hua Deng,[†] Renmeng Jia,[†] Wu-Lin Yang, Xingxin Yu* and Wei-Ping Deng*

Shanghai Key Laboratory of New Drug Design & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

Table of Contents

General information	1
Table S1. Optimization of the reaction conditions	2
General procedure	3
Gram scale procedure	15
Synthetic transformations of the cycloadduct 3aa	15
Proposed transition states of the diastereodivergent asymmetric 1,3-dipolar	
cycloaddition	17
References	18
The absolute configuration determination of 3fa and 4fa	19
Chiral HPLC Chromatograms	22
¹ H NMR and ¹³ C NMR spectra	56

General information

¹H NMR spectrum were recorded on a Bruker AVANCE III 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectrums are interpreted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, brs = broad singlet, coupling constant(s) *J* are reported in Hz and relative integrations are reported. ¹³C NMR (100 MHz) spectrums were recorded on a Bruker AVANCE III 400 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal chloroform signal at 77.06 ppm as a standard. Optical rotations were measured on an AUTOPOL V. Diastereomeric ratios and enantiomeric excesses were determined from crude ¹H NMR spectroscopy interpretation or by analysis of HPLC traces, obtained by using chiralpak AD-H columns with *n*-hexane and *i*-propanol or ethanol as solvents. (Chiralpak AD-H columns were purchased from Daicel Chemical Industries, LTD.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. Mass spectrums were recorded on TOF mass Waters GCT Premier and Xevo G2 spectrometer. Solvents were dried and distilled following usual protocols. Commercially available materials purchased from Adamas-beta, TCI or Energy Chemical and were used as received.

Imino esters¹ and exocyclic alkenes: *tert*-butyl 3-(2-methoxy-2-oxoethylidene)azetidine-1-carboxylate (**2b**),² *tert*-butyl 3-(2-ethoxy-2-oxoethylidene)azetidine-1-carboxylate (**2c**)² and 2-(1-tosylazetidin-3-ylidene)acetonitrile (**2d**),² 2-(oxetan-3-ylidene)acetonitrile (**2e**),² methyl 2-(oxetan-3-ylidene)acetate (**2f**),² 2-(thietan-3-ylidene)acetonitrile (**2g**),³ ethyl 2-(thietan-3-ylidene)acetate (**2h**)², *tert*-butyl 4-(cyanomethylene)piperidine-1-carboxylate (**2i**)⁴ were prepared according to the literature procedure, *tert*-butyl 3-(cyanomethylene)azetidine-1-carboxylate (**2a**) were purchased from Bidepharm and were used as received.

MeO₂C	+ CN L6 - CuB NBoc Ba 2a	5 (11 mol%) F ₄ (10 mol%) Ise, Solvent 4 Å MS	p-CIC ₆ H ₄ NC ₁ NB H C exo- 3aa	oc O ₂ Me ⁺ <i>p</i> -CIC ₆ H	NC, NBoc 4"''' NCO ₂ Me endo-4aa	Fe PPh ₂ L6
Entry	Solvent	Base	Metal	Yield(%) ^b	exo/endo ^c	ee(%) ^c
1	CH ₂ Cl ₂	Cs ₂ CO ₃	CuBF ₄	96	8:1	97
2	THF	Cs_2CO_3	CuBF ₄	94	7:1	97
3	Et ₂ O	Cs_2CO_3	CuBF ₄	95	7:1	96
4	TBME	Cs ₂ CO ₃	CuBF ₄	96	7:1	96
5	(CH ₂ Cl) ₂	Cs_2CO_3	CuBF ₄	97	6:1	97
6	toluene	Cs_2CO_3	CuBF ₄	95	4:1	95
7	CH₃CN	Cs_2CO_3	CuBF ₄	95	4:1	95
8	CHCl ₃	Cs_2CO_3	CuBF ₄	96	8:1	96
9	Dioxane	Cs_2CO_3	CuBF ₄	97	8:1	96
10	2-MeTHF	Cs_2CO_3	CuBF ₄	89	8:1	95
11	CH₃OH	Cs_2CO_3	CuBF ₄	trace	-	-
12	THF/CH₃OH	Cs_2CO_3	CuBF ₄	trace	-	-
13 ^d	CH_2CI_2	DBU	CuBF ₄	96	4:1	97
14 ^d	CH_2CI_2	Et_3N	CuBF ₄	93	8:1	93
15 ^e	CH_2CI_2	K ₂ CO ₃	CuBF ₄	96	7:1	96
16 ^d	CH_2CI_2	LiHMDS	CuBF ₄	92	7:1	95
17 ^d	CH_2CI_2	DIPEA	CuBF ₄	trace	-	-
18 ^d	CH_2CI_2	TMG	CuBF ₄	84	4:1	95
19 ^d	CH_2CI_2	DABCO	CuBF ₄	60	8:1	97
20 ^d	CH_2CI_2	<i>t</i> BuOK	CuBF ₄	92	6:1	97
21 ^d	CH_2CI_2	DMAP	CuBF ₄	NR	-	-
22 ^e	CH_2CI_2	Na_2CO_3	$CuBF_4$	94	8:1	96
23 ^d	CH_2CI_2	NaOH	$CuBF_4$	94	9:1	95
24 ^d	CH_2CI_2	КОН	CuBF ₄	94	8:1	96
25	CH_2CI_2	Cs_2CO_3	CuPF ₆	70	4:1	94
26	CH_2CI_2	Cs_2CO_3	Cu(OTf) ₂	93	9:1	96
27	CH_2CI_2	Cs_2CO_3	CuOAc	86	4:1	95
28	CH_2CI_2	Cs_2CO_3	$AgSbF_6$	88	1.3:1	76/81
29	CH_2CI_2	Cs_2CO_3	AgF	91	1.6:1	73/84
30	CH_2CI_2	Cs_2CO_3	$AgBF_4$	79	1.3:1	73/85
31	CH_2CI_2	Cs_2CO_3	$AgCIO_4 \cdot H_2O$	NR	-	-
32	CH_2CI_2	Cs_2CO_3	Ag ₂ CO ₃	94	1.3:1	73/77

Table S1. Optimization of the reaction conditions

^{*a*} Unless otherwise stated, the reactions were performed with **1a** (0.12 mmol), **2a** (0.10 mmol) in 1.0 mL of solvent, under an N₂ atmosphere at rt, 1 equiv of base was used, $CuBF_4 = Cu(MeCN)_4BF_4$, $CuPF_6 = Cu(MeCN)_4PF_6$, TMG = Tetramethylguanidine. ^{*b*} Isolated yield. ^{*c*} The ratio of *exo/endo* was determined by ¹H NMR spectroscopy or/and chiral HPLC analysis, and the ee was determined by chiral HPLC analysis. ^{*d*} 20 mol% of base was used. ^{*e*} 2 equiv of base was used.

General procedure

At a nitrogen atmosphere, $Cu(CH_3CN)_4BF_4$ (3.1 mg, 0.01 mmol) and **L6** (5.8 mg, 0.011mmol) were dissolved in 2.0 mL dry CH_2Cl_2 , subsequently add 4Å Ms (100 mg), and stirred at room temperature for about 1 h. Then, iminoester **1** (0.24 mmol) and Cs_2CO_3 (65.2 mg, 0.2 mmol) were added, the mixture was cooled to -20 °C and alkene **2** (0.2 mmol) was added. Once starting material was consumed (about 0.5-1 h, monitored by TLC), the mixture was concentrated and the residue was purified by column chromatography (petroleum ether/ethyl acetate 6:1 to 2:1) on silica gel to afford the corresponding product **3**.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 98%; m.p.: 165-167 °C; $[\alpha]_D^{25} = +134.5$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, 2H), 7.39 – 7.33 (m, 2H), 4.35 (d, *J* = 9.3 Hz, 1H), 4.29 (d, *J* = 9.1 Hz, 1H), 4.13 (s, 1H), 4.05 (d, *J* = 9.2 Hz, 1H), 3.94 (d, *J* = 9.7 Hz, 1H), 3.86 (d, *J* = 9.8 Hz, 1H), 3.83 (s, 3H), 3.22 (d, *J* = 9.3 Hz, 1H), 2.52 (brs, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 155.8, 137.5, 134.6, 129.2 (2C), 128.1 (2C), 116.9, 80.4, 66.2, 63.5, 58.2, 54.2, 52.7, 46.0, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄CIN₃O₄+H]⁺: 406.1528, found: 406.1532; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 10.40 min, 16.03 min.

2-(*tert***-Butyl) 5-ethyl** (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 97%; m.p.: 169-171 °C; $[\alpha]_D^{25} = +141.3(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), δ 4.52 (d, *J* = 7.1 Hz, 1H, minor), 4.41 – 4.23 (m, 4H), 4.17 (d, *J* = 8.9 Hz, 1H, minor), 4.13 – 4.03 (m, 2H), 3.97 (d, *J* = 9.4 Hz, 1H), 3.85 (d, *J* = 9.7 Hz, 1H), 3.48 (d, *J* = 7.1 Hz, 1H, minor), 3.21 (d, *J* = 9.1 Hz, 1H), 2.54 (s, 1H), 1.45 (s, 9H,), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (major + minor) 171.8, 171.1, 170.8, 155.7, 137.6, 134.5, 129.1 (2C), 129.0, 128.4, 128.0 (2C), 117.0, 80.3, 66.2, 63.5, 62.1, 61.9, 61.1, 60.4, 58.1, 54.4, 46.3, 46.1, 45.2, 45.0, 28.3 (3C), 21.0, 14.2. HRMS (ESI-TOF) calcd for [C₂₁H₂₆ClN₃O₄+H]⁺: 420.1685, found: 420.1689; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 10.15 min, 17.21 min.

2-tert-Butyl (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 96%; m.p.: 174-176 °C; $[\alpha]_D^{25} = +174.2(c\ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.5 Hz, 2H), 77.39 – 7.33 (m, 2H), 7.37 – 7.32 (m, 1H, minor), 4.52 (d, *J* = 7.5 Hz, 1H, minor), 4.35 (d, *J* = 8.6 Hz, 1H), 4.27 (d, *J* = 9.1 Hz, 1H), 4.17 (d, *J* = 8.8 Hz, 1H, minor), 4.09 (d, *J* = 9.2 Hz, 1H), 4.06 – 3.98 (m, 1H), 3.97 (s, 1H), 3.94 – 3.89 (m, 2H, minor), 3.86 (s, 1H, minor), 3.79 (d, *J* = 9.6 Hz, 1H), 3.48 (d, *J* = 7.5 Hz, 1H, minor), 3.16 (d, *J* = 8.6 Hz, 1H), 2.51 (brs, 1H), 1.56 (s, 9H, minor), 1.53 (s, 9H), 1.45 (s, 9H), 1.43 (s, 9H, minor). ¹³C NMR (100 MHz, CDCl₃) δ (major + minor) 170.7, 169.7, 155.6, 155.4, 137.8, 136.8, 134.5, 129.2 (2C), 129.0, 128.4, 128.0 (2C), 117.3, 116.1, 83.6, 83.2, 80.3, 66.8, 66.6, 63.5, 61.1, 57.5, 54.6, 46.6, 46.3, 45.0, 44.6, 28.4 (3C), 28.1 (3C), 28.0. HRMS (ESI-TOF) calcd for [C₂₃H₃₀ClN₃O₄+H]⁺: 448.1998, found: 448.2002; HPLC (Chiralpak AD-H, *n*hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.63 min, 15.91 min.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-7-(2-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 96%; m.p.: 156-158 °C; $[\alpha]_D^{25} = +215.4(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.6, 1.9 Hz, 1H), 7.38 (dd, J = 7.7, 1.6 Hz, 1H), 7.35 – 7.21 (m, 2H), 4.98 (d, J = 5.3 Hz, 1H), 4.88 (d, J = 7.0 Hz, 1H, minor), 4.31 – 4.19 (m, 3H), 4.06 (s, 2H, minor), 4.02 (s, 1H, minor), 3.96 (d, J = 9.0 Hz, 1H, minor), 3.86 (s, 3H), 3.79 (d, J = 9.8 Hz, 1H), 3.74 (d, J = 7.1 Hz, 1H, minor), 3.46 (d, J = 9.8 Hz, 1H), 3.35 (d, J = 5.3 Hz, 1H), 2.61 (brs, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 155.8, 137.6, 132.9, 129.8, 129.6, 127.8, 127.5, 117.7, 80.3, 65.4, 60.0, 56.0, 56.0, 52.6, 45.8, 44.6, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄ClN₃O₄+H]⁺: 406.1528, found: 406.1533; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.36 min, 17.57 min.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-7-(3-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-diazaboxylate White solid, yield: 98%; m.p.: 165-167 °C; $[\alpha]_D^{25} = +181.4(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.40 – 7.35 (m, 1H), 7.34 – 7.31 (m, 2H), 4.50 (d, *J* = 7.2 Hz, 1H, minor), 4.35 (d, *J* = 9.2 Hz, 1H), 4.29 (d, *J* = 9.2 Hz, 1H), 4.13 (s, 1H), 4.06 (d, *J* = 9.2 Hz, 1H), 3.94 (d, *J* = 9.7 Hz, 1H), 3.90 – 3.87 (m, 1H), 3.84 (s, 3H), 3.49 (d, *J* = 6.9 Hz, 1H, minor), 3.25 (d, *J* = 9.2 Hz, 1H), 2.57 (brs, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 155.8, 141.1, 135.0, 130.3,

129.0, 126.8, 125.0, 116.9, 80.4, 66.2, 63.6, 58.1, 54.3, 52.7, 45.9, 45.2, 28.3 (3C). **HRMS** (ESI-TOF) calcd for $[C_{20}H_{24}CIN_3O_4+H]^+$: 406.1528, found: 406.1532; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.18 min, 24.12 min.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-7-(4-bromophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 98%; m.p.: 169-171°C; $[\alpha]_D^{25} = +152.7(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H, minor), 4.49 (d, J = 6.9 Hz, 1H, minor), 4.33 (d, J = 9.5 Hz, 1H), 4.29 (d, J = 9.1 Hz, 1H), 4.13 (s, 1H), 4.05 (d, J = 9.1 Hz, 1H), 4.04 – 3.96 (m, 3H, minor), 3.93 (d, J = 9.8 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.83 (s, 3H), 3.48 (d, J = 6.9 Hz, 1H, minor), 3.22 (d, J = 9.2 Hz, 1H), 2.55 (brs, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 155.8, 138.0, 132.1 (2C), 128.4 (2C), 122.8, 116.9, 80.4, 66.2, 63.6, 58.4, 54.2, 52.7, 46.0, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄⁷⁹BrN₃O₄+H]⁺: 450.1023, found: 450.1027, [C₂₀H₂₄⁸¹BrN₃O₄+H]⁺: 452.1002, found: 452.1006; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 10.99 min, 17.97 min.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-8-cyano-7-(4-cyanophenyl)-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 97%; m.p.: 164-166°C; $[\alpha]_D^{25} = +185.3(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 4H), 4.62 (d, *J* = 7.2 Hz, 1H, minor), 4.46 (d, *J* = 9.3 Hz, 1H), 4.29 (d, *J* = 9.1 Hz, 1H), 4.18 (s, 1H), 4.05 (d, *J* = 9.2 Hz, 1H), 3.96 – 3.85 (m, 2H), 3.84 (s, 3H), 3.55 (d, *J* = 7.2 Hz, 1H, minor) 3.28 (d, *J* = 9.3 Hz, 1H), 2.66 (brs, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 155.7, 144.7, 132.7 (2C), 127.5 (2C), 118.4, 116.6, 112.6, 80.5, 66.0, 63.4, 58.2, 53.9, 52.7, 45.7, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₁H₂₄N₄O₄+H]⁺: 397.1870, found: 397.1874; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 14.13 min, 25.44 min.

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***R***)-8-cyano-7-(4-fluorophenyl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 96%; m.p.: 151-153 °C; [\alpha]_D^{25} = +162.5(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.54 – 7.44 (m, 2H), 7.14 – 6.95 (m, 2H), 4.52 (d,** *J* **= 7.0 Hz, 1H, minor), 4.35 (d,** *J* **= 9.4 Hz, 1H), 4.30 (d,** *J* **= 9.2 Hz, 1H), 4.12 (s, 1H) , 4.06 (d,** *J* **= 9.2 Hz, 1H), 3.95 (d,** *J* **= 9.7 Hz, 1H), 3.87 (d,** *J* **= 9.1 Hz, 1H), 3.83 (s, 3H), 3.47 (d,** *J* **= 7.0 Hz, 1H, minor), 3.22 (d,** *J* **= 9.3 Hz, 1H), 2.54 (brs,** 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 162.9 (d, J = 247.4 Hz), 155.8, 134.6, 128.4 (d, J = 8.2 Hz, 2C), 117.0, 115.9 (d, J = 21.6 Hz, 2C), 80.4, 66.2, 63.5, 58.4, 54.3, 52.6, 46.1, 45.2, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄FN₃O₄+H]⁺: 390.1824, found: 390.1830; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 10.30 min, 16.31 min.

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***R***)-8-cyano-7-(***o***-tolyl)-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 97%; m.p.: 139-141 °C; [\alpha]_D^{25} = +153.6(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.66 (d, J = 7.5 Hz, 1H, minor), 7.60 (dd, J = 7.2, 1.9 Hz, 1H), 7.33 – 7.11 (m, 3H), 4.69 (d, J = 8.0 Hz, 1H), 4.29 (d, J = 9.2 Hz, 1H), 4.15 (d, J = 9.5 Hz, 1H), 4.13 (s, 1H), 4.06 (s, 2H, minor), 3.95 (d, J = 9.8 Hz, 1H), 3.88 (s, 3H, minor), 3.85 (s, 3H), 3.77 (d, J = 9.7 Hz, 1H), 3.52 (d, J = 7.1 Hz, 1H, minor), 3.23 (d, J = 8.0 Hz, 1H), 2.44 (s, 4H), 2.35 (s, 3H, minor), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 172.1, 155.8, 137.1, 136.1, 130.9, 128.4, 126.9, 125.5, 117.6, 80.3, 66.2, 60.0, 57.4, 55.1, 52.7, 45.4, 45.2, 28.3 (3C), 19.5. HRMS (ESI-TOF) calcd for [C_{21}H_{27}N_3O_4+H]^+: 386.2074, found: 386.2078; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.90 min,13.61 min.**

2-(*tert***-Butyl) 5-methyl (55,7***R***,8***R***)-8-cyano-7-(***m***-tolyl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 97%; m.p.: 142-144 °C; [\alpha]_D^{25} = +174.5(c 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) \delta 7.33 – 7.23 (m, 3H), 7.20 – 7.13 (m, 1H), 4.47 (d, J = 6.8 Hz, 1H, minor), 4.31 (d, J = 9.0 Hz, 2H), 4.15 (d, J = 9.0 Hz, 1H, minor), 4.11 (s, 1H), 4.08 (d, J = 9.2 Hz, 1H), 3.96 (d, J = 9.7 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.84 (s, 3H), 3.47 (d, J = 6.8 Hz, 1H, minor), 3.23 (d, J = 9.1 Hz, 1H), 2.37 (s, 3H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 172.3, 155.8, 138.7, 138.6, 129.5, 128.9, 127.3, 123.6, 117.2, 80.3, 66.4, 64.4, 58.2, 54.6, 52.6, 46.1, 45.3, 28.3 (3C), 21.4. HRMS (ESI-TOF) calcd for [C_{21}H_{27}N_3O_4+H]^+: 386.2074, found: 386.2079; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 9.27 min, 22.53 min.**

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***R***)-8-cyano-7-(***p***-tolyl)-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 97%; m.p.: 171-173 °C; [\alpha]_D^{25} = +192.7(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.36 (d,** *J* **= 7.9 Hz, 2H), 7.19 (d,** *J* **= 7.8 Hz, 2H), 4.48 (d,** *J* **= 6.9 Hz, 1H, minor), 4.31 (dd,** *J* **= 9.4, 2.6 Hz, 2H), 4.15 (d,** *J* **= 9.0 Hz, 1H, minor), 4.10 (s, 1H), 4.07 (d,** *J* **= 9.2 Hz, 1H), 4.02 (d,** *J* **= 6.2 Hz,** 2H, minor), 3.95 (d, J = 9.7 Hz, 1H), 3.90 – 3.85 (m, 1H), 3.83 (s, 3H), 3.46 (d, J = 6.8 Hz, 1H, minor), 3.21 (d, J = 9.2 Hz, 1H), 2.51 (brs, 1H), 2.35 (s, 3H), 1.45 (s, 9H). ¹³**C** NMR (100 MHz, CDCl₃) δ 172.4, 155.8, 138.7, 135.6, 129.7 (2C), 126.5 (2C), 117.2, 80.3, 66.5, 64.2, 57.9, 54.5, 52.6, 46.2, 45.3, 28.3 (3C), 21.2. **HRMS** (ESI-TOF) calcd for [C₂₁H₂₇N₃O₄+H]⁺: 386.2074, found: 386.2079; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 9.56 min, 11.74 min.

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***R***)-8-cyano-7-(2-methoxyphenyl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 97%; m.p.: 145-147 °C; [\alpha]_D^{25} = +234.7(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.49 (dd, J = 7.6, 1.7 Hz, 1H), 7.36 – 7.26 (m, 1H), 7.02 – 6.93 (m, 1H), 6.90 (d, J = 8.2 Hz, 1H), 4.73 (d, J = 7.5 Hz, 1H, minor), 4.64 (d, J = 6.6 Hz, 1H), 4.29 (d, J = 9.4 Hz, 1H), 4.18 (d, J = 9.4 Hz, 1H), 4.08 (s, 1H), 4.02 (d, J = 8.6 Hz, 1H, minor), 3.89 – 3.78 (m, 7H), 3.62 (d, J = 9.7 Hz, 1H), 3.36 (d, J = 6.7 Hz, 1H), 2.86 (brs, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 171.4, 156.8, 155.9, 129.7, 128.0, 126.6, 121.0, 118.5, 110.6, 80.2, 66.4, 61.1, 56.7, 55.3 (2C), 52.6, 45.6, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for [C_{21}H_{27}N_3O_5+H]^+: 402.2023, found: 402.2027; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 12.22 min, 27.45 min.**

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***R***)-8-cyano-7-phenyl-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 96%; m.p.: 154-156 °C; [\alpha]_D^{25} = +183.8(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.53 – 7.46 (m, 2H), 7.45 – 7.32 (m, 3H), 4.52 (d,** *J* **= 6.4 Hz, 1H, minor), 4.48 (s, 1H, minor), 4.36 (d,** *J* **= 9.2 Hz, 1H), 4.31 (d,** *J* **= 9.2 Hz, 1H), 4.12 (s, 1H), 4.08 (d,** *J* **= 9.2 Hz, 1H), 3.96 (d,** *J* **= 9.7 Hz, 1H), 3.91 – 3.83 (m, 1H), 3.84 (s, 3H), 3.49 (d,** *J* **= 6.9 Hz, 1H, minor), 3.25 (d,** *J* **= 9.2 Hz, 1H), 2.56 (brs, 1H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 172.4, 155.8, 138.7, 129.0 (2C), 128.8, 126.6 (2C), 117.2, 80.3, 66.4, 64.3, 58.0, 54.5, 52.6, 46.1, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₅N₃O₄+H]⁺: 372.1918.2074, found: 372.1922; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 9.35 min, 16.26 min.**

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-8-cyano-7-(naphthalen-2-yl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 98%; m.p.: 158-160 °C; $[\alpha]_D^{25} = +221.4(c \ 1.00, CH_2Cl_2);$ ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.90 (m, 1H), 7.91 – 7.80 (m, 3H), 7.61 (dd, J = 8.6, 1.8 Hz, 1H), 7.55 – 7.46 (m, 2H), 4.67 (d, J = 7.1 Hz, 1H, minor), 4.53 (d, J = 9.1 Hz, 1H), 4.35 (d, J = 9.1 Hz, 1H), 4.17 (s, 1H), 4.11 (d, J = 9.2 Hz, 1H), 4.10 – 4.02 (m, 2H, minor), 3.98 (d, J = 9.7 Hz, 1H), 3.94 – 3.87 (m, 1H), 3.87 (s, 3H), 3.56 (d, J = 6.9 Hz, 1H, minor), 3.35 (d, J = 9.1 Hz, 1H), 2.65 (brs, 1H), 1.46 (s, 9H). ¹³C **NMR** (100 MHz, CDCl₃) δ 172.4, 155.8, 136.0, 133.5, 133.2, 129.1, 128.1, 127.8, 126.6, 126.5, 126.2, 123.9, 117.2, 80.4, 66.4, 64.5, 58.2, 54.5, 52.7, 46.0, 45.3, 28.3 (3C). **HRMS** (ESI-TOF) calcd for [C₂₄H₂₇N₃O₄+H]⁺: 422.2074, found: 422.2078; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 14.71 min, 24.49 min.

2-(*tert***-Butyl) 5-methyl** (5*S*,7*R*,8*R*)-8-cyano-7-(thiophen-2-yl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 97%; m.p.: 119-121 °C; $[\alpha]_D^{25} = +173.5(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, *J* = 5.2, 1.3 Hz, 1H), 7.15 (d, *J* = 3.5 Hz, 1H), 6.99 (dd, *J* = 5.1, 3.5 Hz, 1H), 4.78 (d, *J* = 7.2 Hz, 1H, minor), 4.68 (d, *J* = 8.6 Hz, 1H), 4.28 (d, *J* = 9.2 Hz, 1H), 4.17 (d, *J* = 9.0 Hz, 1H, minor), 4.09 (s, 1H), 4.06 (d, *J* = 9.3 Hz, 1H), 3.94 (d, *J* = 9.8 Hz, 1H), 3.91 – 3.84 (m, 1H), 3.83 (s, 3H), 3.50 (d, *J* = 7.1 Hz, 1H, minor), 3.34 (d, *J* = 8.6 Hz, 1H), 2.71 (brs, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 155.8, 143.1, 127.3, 125.7, 125.3, 117.0, 80.4, 66.2, 60.0, 57.6, 54.6, 52.6, 46.7, 45.2, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₁₈H₂₃N₃O₄S+H]⁺: 378.1482, found: 378.1486; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 10.98 min, 26.59 min.

2-(*tert***-Butyl) 5-methyl (5S,7S,8R)-8-cyano-7-cyclohexyl-2,6-diazaspiro[3.4]octane-2,5-diazabxylate** White solid, yield: 92%; m.p.: 132-134°C; $[\alpha]_D^{25} = +138.5(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 4.24 (d, J = 9.2 Hz, 1H), 4.01 (d, J = 9.3 Hz, 1H), 3.92 – 3.85 (m, 2H), 3.86 – 3.79 (m, 1H), 3.79 (s, 3H), 3.13 – 3.04 (m, 1H), 2.97 (d, J = 8.6 Hz, 1H), 2.17 (s, 1H), 1.86 – 1.65 (m, 6H), 1.45 (s, 9H), 1.32 – 1.01 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 155.8, 118.5, 80.2, 66.4, 66.3, 57.4, 55.4, 52.5, 45.2, 42.5, 41.2, 29.9, 29.7, 28.3 (3C), 26.1, 25.8, 25.7. HRMS (ESI-TOF) calcd for [C₂₀H₃₁N₃O₄+H]⁺: 378.2387, found: 378.2391; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 7.55 min, 9.55 min.

2-(*tert***-Butyl) 5-methyl (5S,7***R***,8***R***)-7-(***tert***-butyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 91%; m.p.: 142-144°C; [\alpha]_D^{25} = +178.6(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 4.24 (d, J = 9.4 Hz, 1H), 4.05 (d, J = 9.3 Hz, 1H), 3.88 (s, 1H), 3.86 – 3.80 (m, 2H), 3.78 (s, 3H), 3.16 (d, J = 8.2 Hz, 1H), 3.03 (d, J = 8.3 Hz, 1H), 2.23 (s, 1H), 1.44 (s, 9H), 0.97 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 171.1, 155.8, 119.0, 80.1, 70.4, 65.9, 56.5, 56.1, 52.4, 45.0, 39.0, 33.6, 28.3 (3C), 26.1 (3C). HRMS (ESI-TOF) calcd for [C₁₈H₂₉N₃O₄+H]⁺: 352.2231, found: 352.2236; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.78 min, 9.36 min.**

2-(*tert***-Butyl) 5,8-dimethyl (5S,7***R***,8***R***)-7-(4-chlorophenyl)-2,6-diazaspiro[3.4]octane-2,5,8-tricarboxylate** White solid, yield: 94%; m.p.: 153-155 °C; $[\alpha]_D^{25} = +156.4$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 4.48 (d, J = 7.9 Hz, 1H), 4.13 (s, 1H), 4.08 (d, J = 8.3 Hz, 1H, minor), 4.06 – 3.94 (m, 2H), 3.94 – 3.84 (m, 2H), 3.83 (s, 3H), 3.73 (s, 3H), 3.41 (d, J = 6.8 Hz, 1H, minor), 3.34 (s, 2H, minor), 3.12 (d, J = 8.0 Hz, 1H), 2.46 (brs, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ (minor + major) 172.6, 171.8, 171.5, 170.6, 156.0, 140.1, 133.6, 128.8, 128.6, 128.3, 127.9, 79.9, 68.6, 67.3, 63.2, 62.6, 59.2, 57.2, 55.4, 52.5, 52.4, 52.3, 51.5, 45.5, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₁H₂₇ClN₂O₆+H]⁺: 439.1630, found: 439.1634; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 28.26 min, 32.83 min.

2-(*tert***-Butyl) 8-ethyl 5-methyl (5***S***,7***R***,8***R***)-7-(4-chlorophenyl)-2,6-diazaspiro[3.4]octane-2,5,8tricarboxylate White solid, yield: 99%; m.p.: 156-158 °C; [\alpha]_D^{25} = +164.4 (***c* **1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) \delta 7.42 (d,** *J* **= 8.1 Hz, 2H), 7.30 (d,** *J* **= 6.7 Hz, 2H), 4.48 (d,** *J* **= 7.9 Hz, 1H), 4.29 – 4.19 (m, 1H), 4.17 – 4.05 (m, 2H), 4.07 – 3.94 (m, 2H), 3.93 – 3.85 (m, 2H), 3.83 (s, 3H), 3.39 (d,** *J* **= 6.7 Hz, 1H, minor), 3.10 (d,** *J* **= 8.2 Hz, 1H), 2.44 (brs, 1H), 1.42 (s, 9H), 1.25 (t,** *J* **= 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta (minor + major) \delta 172.8, 171.7, 170.9, 170.2, 156.1, 155.9, 140.2, 133.6, 133.5, 128.8 (2C), 128.5, 128.4 (2C), 128.0, 79.9, 79.8, 68.8, 67.4, 63.2, 62.5, 61.3, 60.7, 59.8, 59.0, 52.5, 52.4, 46.9, 45.5, 28.4 (3C), 28.4 (3C), 14.2, 13.8. HRMS (ESI-TOF) calcd for [C₂₂H₂₉ClN₂O₆+H]⁺: 453.1787, found: 453.1791; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 14.30 min, 16.99 min.**

Methyl (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2-tosyl-2,6-diazaspiro[3.4]octane-5-carboxylate White solid, yield: 75%; m.p.: 173-175 °C; $[\alpha]_D^{25} = +170.4$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃)) δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.38 (dd, *J* = 8.5, 2.5 Hz, 4H), 7.36 – 7.29 (m, 2H), 4.27 (d, *J* = 9.0 Hz, 1H), 4.05 (s, 1H), 4.02 – 3.97 (m, 2H), 3.87 (d, *J* = 9.0 Hz, 1H), 3.77 (s, 3H), 3.61 (d, *J* = 9.0 Hz, 1H), 3.07 (d, *J* = 9.0 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.0, 144.9, 137.3, 134.6, 131.0, 130.0 (2C), 129.1 (2C), 128.3 (2C), 127.9 (2C), 116.4, 65.6, 63.4, 58.2, 55.2, 52.7, 45.5, 44.7, 21.6. HRMS (ESI-TOF) calcd for [C₂₂H₂₂ClN₃O₄S+H]⁺: 460.1092, found: 460.1096; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 17.85 min, 21.31 min.

Methyl (5S,7*R***,8***R***)-7-(4-chlorophenyl)-8-cyano-2-oxa-6-azaspiro[3.4]octane-5-carboxylate** White solid, yield: 86%; m.p.: 144-146 °C; $[\alpha]_D^{25} = +188.0$ (*c* 1.00, CH₂Cl₂); ¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 2H), 7.38 – 7.30 (m, 2H), 5.00 (d, *J* = 6.8 Hz, 1H), 4.79 (d, *J* = 6.9 Hz, 1H), 4.67 (d, *J* = 7.5 Hz, 1H), 4.59 (d, *J* = 7.5 Hz, 1H), 4.29 (d, *J* = 9.4 Hz, 1H), 4.24 (s, 1H), 3.85 (s, 3H), 3.21 (d, *J* = 9.4 Hz, 1H), 2.55 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 137.3, 134.6, 129.2 (2C), 128.0 (2C), 117.1, 79.0, 75.5, 65.6, 63.5, 52.7, 50.8, 45.5. **HRMS** (ESI-TOF) calcd for [C₁₅H₁₅ClN₂O₃+H]⁺: 307.0844, found: 307.0848; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 31.21 min, 37.76 min.

Dimethyl (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-2-oxa-6-azaspiro[3.4]octane-5,8-dicarboxylate White solid, yield: 91%; m.p.: 154-156 °C; $[\alpha]_D^{25} = +156.3$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.75 (d, *J* = 6.9 Hz, 1H), 4.71 (d, *J* = 6.8 Hz, 1H), 4.65 (d, *J* = 7.0 Hz, 1H), 4.54 (d, *J* = 7.0 Hz, 1H), 4.44 (d, *J* = 8.2 Hz, 1H), 4.20 (s, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 3.14 (d, *J* = 8.2 Hz, 1H), 2.26 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 171.6, 139.9, 133.6, 128.8 (2C), 128.2 (2C), 78.1, 77.4, 66.7, 62.7, 58.8, 52.5, 52.4, 51.4. HRMS (ESI-TOF) calcd for [C₁₆H₁₈CINO₅+H]⁺: 340.0946, found: 340.0951; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 18.84 min, 23.48 min.

Methyl (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2-thia-6-azaspiro[3.4]octane-5-carboxylate White solid, yield: 93%; m.p.: 140-142 °C; $[\alpha]_D^{25} = +163.4$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ

7.48 (d, J = 8.5 Hz, 2H), 7.35 (d, J = 8.5 Hz, 2H), 4.38 (d, J = 9.3 Hz, 1H), 4.27 (s, 1H), 4.13 (s, 1H, minor), 3.85 (s, 3H), 3.67 (d, J = 9.8 Hz, 1H), 3.49 – 3.39 (m, 2H, minor), 3.31 – 3.21 (m, 2H), 3.17 (dd, J = 9.8, 6.3 Hz, 2H), 2.54 (brs, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.7, 137.8, 134.5, 129.1 (2C), 128.2 (2C), 117.4, 67.9, 62.9, 55.0, 52.6, 47.9, 34.1, 30.5. **HRMS** (ESI-TOF) calcd for [C₁₅H₁₅ClN₂O₂S+H]⁺: 323.0616, found: 323.0620; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 23.89 min, 27.14 min.

8-Ethyl 5-methyl (5*S***,7***R***,8***R***)-7-(4-chlorophenyl)-2-thia-6-azaspiro[3.4]octane-5,8-dicarboxylate White solid, yield: 93%; m.p.: 148-150 °C; [\alpha]_D^{25} = +136.4 (***c* **1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) \delta 7.45 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 4.51 (d, J = 9.1 Hz, 1H), 4.32 – 4.16 (m, 2H), 4.16 (s, 1H), 3.84 (s, 3H), 3.48 (d, J = 9.8 Hz, 1H), 3.36 (d, J = 9.9 Hz, 1H), 3.26 (d, J = 9.8 Hz, 1H), 3.21 (d, J = 9.9 Hz, 1H), 3.05 (d, J = 9.2 Hz, 1H), 2.36 (brs, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 173.1, 170.9, 140.2, 133.4, 128.7 (2C), 128.5 (2C), 69.3, 62.0, 61.4, 59.9, 56.0, 52.3, 33.5, 31.4, 14.2. HRMS (ESI-TOF) calcd for [C₁₇H₂₀ClNO₄S+H]⁺: 370.0880, found: 370.0884; HPLC (Chiralpak AD-H,** *n***-hexane/***i***-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 14.03 min, 15.88 min.**

8-(*tert*-Butyl) 1-methyl (1*S*,3*R*,4*R*)-3-(4-chlorophenyl)-4-cyano-2,8-diazaspiro[4.5]decane-1,8-dicarboxylate White solid, yield: 86%; m.p.: 168-170 °C; $[\alpha]_D^{25} = +157.5$ (*c* 1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.5 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 4.49 (d, *J* = 10.1 Hz, 1H), 4.02 (s, 2H), 3.79 (s, 3H), 3.77 - 3.66 (m, 1H), 3.34 - 3.09 (m, 2H), 3.00 (d, *J* = 10.1 Hz, 1H), 2.52 (s, 1H), 2.01 - 1.65 (m, 4H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 154.6, 138.4, 134.3, 129.0 (2C), 128.4 (2C), 117.7, 80.1, 65.0, 63.3, 52.2, 48.4, 47.7, 40.6, 39.9, 31.5, 31.3, 28.4 (3C). HRMS (ESI-TOF) calcd for $[C_{22}H_{28}CIN_3O_4+H]^+$: 434.1841, found: 434.1846; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 80/20, 1.0 mL/min, 220 nm) t_R = 8.05 min, 11.87 min.

At a nitrogen atmosphere, $Cu(CH_3CN)_4BF_4$ (3.1 mg, 0.01 mmol), Cs_2CO_3 (65.2 mg, 0.2 mmol) and L7 (5.8 mg, 0.011mmol) were dissolved in 2.0 mL dry CH_2Cl_2 , subsequently add 4Å Ms (100 mg), and stirred at room temperature for about 1-2 h. Then, iminoester **1** (0.24 mmol) were added, the mixture was

cooled to -20 °C and alkene 2 (0.2 mmol) was added. Once starting material was consumed (monitored by TLC), the mixture was concentrated and the residue was purified by column chromatography (petroleum ether/ethyl acetate 6:1 to 2:1) on silica gel to afford the corresponding product 4.

2-(*tert***-Butyl) 5-methyl** (5*R*,7*S*,8*R*)-7-(4-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 88%; m.p.: 176-178°C; $[\alpha]_D^{25} = +175.3(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.32 (m, 4H), 4.51 (d, J = 6.9 Hz, 1H), 4.16 (d, J = 8.9 Hz, 1H), 4.05 – 3.92 (m, 4H), 3.88 (s, 3H), 3.48 (d, J = 6.9 Hz, 1H), 2.69 (s, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 155.9, 136.3, 134.6, 129.0 (2C), 128.4 (2C), 116.0, 80.4, 66.1, 61.2, 58.5, 54.6, 52.8, 46.4, 45.3, 28.3 (3C). HRMS (ESI-TOF) calcd for $[C_{20}H_{24}ClN_3O_4+H]^+$: 406.1528, found: 450.1533; HPLC (Chiralpak AD-H, *n*-hexane/ethanol= 80/20, 0.8 mL/min, 220 nm) t_R = 15.81 min, 19.45 min.

2-(*tert***-Butyl) 5-methyl** (5*R*,7*S*,8*R*)-7-(2-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 91%; m.p.: 167-169 °C; $[\alpha]_D^{25} = +216.2(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.44 – 7.34 (m, 2H), 7.33 – 7.27 (m, 1H), 4.88 (d, *J* = 7.0 Hz, 1H), 4.17 (d, *J* = 8.8 Hz, 1H), 4.07 (s, 2H), 4.02 (s, 1H), 3.96 (d, *J* = 8.9 Hz, 1H), 3.87 (s, 3H), 3.74 (d, *J* = 7.0 Hz, 1H), 2.61 (brs, 1H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 155.9, 135.3, 132.9, 129.8, 129.5, 128.0, 127.4, 115.9, 80.3, 65.7, 59.0, 58.1, 54.7, 52.7, 45.2, 44.8, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄ClN₃O₄+H]⁺: 406.1528, found: 406.1533; HPLC (Chiralpak AD-H, *n*-hexane/ethanol= 80/20, 0.8 mL/min, 220 nm) t_R = 14.22 min, 15.82 min.

2-(*tert***-Butyl) 5-methyl** (5*R*,7*S*,8*R*)-7-(4-bromophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-2,5-diazabaylate White solid, yield: 80%; m.p.: 156-158 °C; $[\alpha]_D^{25} = +153.4(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 4.49 (d, *J* = 7.0 Hz, 1H), 4.15 (d, *J* = 8.9 Hz, 1H), 4.05 – 3.95 (m, 3H), 3.94 (d, *J* = 8.9 Hz, 1H), 3.88 (s, 3H), 3.48 (d, *J* = 7.0 Hz, 1H), 2.69 (s, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 155.9, 136.9, 132.0 (2C), 128.7 (2C), 122.8, 116.0, 80.4, 66.1, 61.2, 58.5, 54.7, 52.8, 46.3, 45.2, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₄⁷⁹BrN₃O₄+H]⁺: 450.1023, found: 450.1027; for [C₂₀H₂₄⁸¹BrN₃O₄+H]⁺: 452.1002, found:

452.1006; **HPLC** (Chiralpak AD-H, *n*-hexane/ethanol= 80/20, 0.8 mL/min, 220 nm) $t_R = 17.61$ min, 21.48 min.

2-(*tert***-Butyl) 5-methyl (5***R***,7***S***,8***R***)-8-cyano-7-(o-tolyl)-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate White solid, yield: 85%; m.p.: 151-153 °C; [\alpha]_D^{25} = +152.8(c \ 1.00, CH_2Cl_2); ¹H NMR (400 MHz, CDCl₃) \delta 7.71 – 7.63 (m, 1H), 7.35 – 7.25 (m, 1H), 7.28 – 7.16 (m, 2H), 4.72 (d,** *J* **= 7.2 Hz, 1H), 4.29 (d,** *J* **= 9.5 Hz, 1H, minor), 4.19 (d,** *J* **= 8.9 Hz, 1H), 4.13 (s, 1H, minor), 4.06 (s, 2H), 3.99 (s, 1H), 3.94 (d,** *J* **= 8.9 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H, minor), 3.52 (d,** *J* **= 7.2 Hz, 1H), 3.23 (d,** *J* **= 8.1 Hz, 1H, minor), 2.64 (brs, 1H), 2.44 (s, 3H, minor), 2.34 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 171.2, 156.0, 135.8, 135.3, 130.7, 128.4, 126.7, 125.8, 116.1, 80.3, 66.0, 58.4, 57.9, 55.1, 52.7, 45.4, 45.2, 28.3 (3C), 19.6. HRMS (ESI-TOF) calcd for [C₂₁H₂₇N₃O₄+H]⁺: 386.2074, found: 386.2078; HPLC (Chiralpak AD-H,** *n***-hexane/ethanol= 80/20, 0.8 mL/min, 220 nm) t_R = 14.43 min, 19.30 min.**

2-(*tert***-Butyl) 5-methyl** (5*R*,7*S*,8*R*)-8-cyano-7-(thiophen-2-yl)-2,6-diazaspiro[3.4]octane-2,5dicarboxylate White solid, yield: 78%; m.p.: 151-153 °C; $[\alpha]_D^{25} = +152.8(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 5.1 Hz, 1H), 7.18 – 7.11 (m, 1H), 7.08 – 6.99 (m, 1H), 4.79 (d, *J* = 7.0 Hz, 1H), 4.17 (d, *J* = 9.0 Hz, 1H), 4.08 – 3.92 (m, 4H), 3.87 (s, 3H), 3.51 (d, *J* = 6.9 Hz, 1H), 2.61 (brs, 1H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 155.9, 142.0, 127.4, 125.8, 125.5, 115.9, 80.3, 66.1, 57.6, 57.4, 54.8, 52.8, 46.6, 45.1, 28.3 (3C). HRMS (ESI-TOF) calcd for [C₁₈H₂₃N₃O₄S+H]⁺: 378.1482, found: 378.1487; HPLC (Chiralpak AD-H, *n*-hexane/ethanol= 80/20, 0.8 mL/min, 220 nm) t_R = 15.89 min, 22.61 min.

2-(*tert***-Butyl) 5,8-dimethyl (5***R***,7***S***,8***R***)-7-(4-chlorophenyl)-2,6-diazaspiro[3.4]octane-2,5,8-tricarboxylate White solid, yield: 87%; m.p.: 163-165 °C; [\alpha]_D^{25} = +155.9 (***c* **1.00, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) \delta 7.34 – 7.25 (m, 4H), 4.48 (d,** *J* **= 6.8 Hz, 1H), 4.15 – 4.05 (m, 2H), 4.02 (d,** *J* **= 8.8 Hz, 1H), 3.97 (s, 1H), 3.88 (s, 3H), 3.84 – 3.77 (m, 1H), 3.73 (s, 3H, minor), 3.41 (d,** *J* **= 6.8 Hz, 1H), 3.34 (s, 3H), 3.13 (d,** *J* **= 7.8 Hz, 1H, minor), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) \delta 171.8, 170.7, 156.1, 136.6, 133.6, 128.6 (2C), 127.9 (2C), 79.9, 68.6, 63.2, 61.5, 59.7, 54.5, 52.5, 51.6, 46.7, 28.4 (3C).**

HRMS (ESI-TOF) calcd for $[C_{21}H_{27}CIN_2O_6+H]^+$: 439.1630, found: 439.1634; **HPLC** (Chiralpak AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 220 nm) t_R = 25.82 min, 28.76 min.

Methyl (5*R*,7*S*,8*R*)-7-(4-chlorophenyl)-8-cyano-2-oxa-6-azaspiro[3.4]octane-5-carboxylate White solid, yield: 85%; m.p.: 162-164 °C; $[α]_D^{25} = +187.6(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 5.00 (d, *J* = 6.9 Hz, 1H, minor), 4.92 – 4.80 (m, 2H), 4.69 (d, *J* = 7.8 Hz, 1H), 4.60 (d, *J* = 6.6 Hz, 1H), 4.43 (d, *J* = 6.4 Hz, 1H), 4.25 (s, 1H, minor), 4.07 (s, 1H), 3.90 (s, 3H), 3.61 (d, *J* = 6.4 Hz, 1H), 3.21 (d, *J* = 9.5 Hz, 1H, minor), 2.67 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 136.0, 134.7, 129.1 (2C), 128.4 (2C), 116.1, 80.2, 75.4, 65.4, 61.4, 52.9, 51.4, 46.2. HRMS (ESI-TOF) calcd for $[C_{15}H_{15}CIN_2O_3+H]^+$: 307.0844, found: 307.0848; HPLC (Chiralpak AD-H, *n*-hexane/*i*-propanol = 90/10, 1.0 mL/min, 220 nm) t_R = 41.67 min, 43.80 min.

Gram scale procedure

Under a nitrogen atmosphere, Cu(CH₃CN)₄BF₄ (62.9 mg, 0.20 mmol) and L6 (115.6 mg, 0.22 mmol) were dissolved in dry CH₂Cl₂ (40 mL), subsequently add 4Å Ms (800 mg), and stirred at room temperature for about 1 h. Then, glycine imine 1a (1.02 g, 4.8 mmol) and Cs₂CO₃ (1.30 g, 4.0 mmol) were added, the mixture was cooled to -20 °C and alkene 2a (0.78 g, 4.0 mmol) was added. Once starting material was consumed (monitored by TLC, about 2 h), the mixture was filtered through celite and the filtrate was concentrated, then the residue was purified by column chromatography (petroleum ether/ethyl acetate 4:1) on silica gel to afford the corresponding product 3aa in 96% yield.

Under a nitrogen atmosphere, $Cu(CH_3CN)_4BF_4$ (62.9 mg, 0.20 mmol), Cs_2CO_3 (1.30 g, 4.0 mmol) and L7 (115.9 mg, 0.22 mmol) were dissolved in dry CH_2Cl_2 (40 mL), subsequently add 4Å Ms (800 mg), and stirred at room temperature for about 1 h. Then, the mixture was cooled to -20 °C, glycine imine **1a** (1.02 g, 4.8 mmol) and alkene **2a** (0.78 g, 4.0 mmol) was added. Once starting material was consumed (monitored by TLC, about 3.5 h), the mixture was filtered through celite and the filtrate was concentrated, then the residue was purified by column chromatography (petroleum ether/ethyl acetate 4:1) on silica gel to afford the corresponding product **4aa** in 83% yield.

Synthetic transformations of the cycloadduct 3aa

To a solution of **3aa** (40.6 mg, 0.1 mmol) in EtOAc (1 mL) was added hydrogen chloride (0.5 mL of a 4 M solution in EtOAc) and the mixture was stirred for 3 h, after which time the solvent was removed under reduced pressure. The crude product was purified by column chromatography ($CH_2Cl_2/MeOH$ 10:1) on silica gel to afford the corresponding product **5** in 92% yield

Methyl (5*S*,7*R*,8*R*)-7-(4-chlorophenyl)-8-cyano-2,6-diazaspiro[3.4]octane-5-carboxylate White solid, yield: 92%; m.p.: 121-123 °C; $[\alpha]_D^{25} = +223.5(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 4.30 (d, *J* = 9.9 Hz, 1H), 4.24 (s, 1H), 4.05 (dd, *J* = 8.5, 1.7 Hz, 1H), 3.82 (s, 3H), 3.75 – 3.64 (m, 2H), 3.61 (d, *J* = 9.0 Hz, 1H), 3.17 (d, *J* = 9.9 Hz, 1H), 2.12 (brs, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 137.7, 134.4, 129.1 (2C), 128.2 (2C), 117.8, 66.5, 63.5, 56.1, 52.5, 51.8, 50.9, 45.9. HRMS (ESI-TOF) calcd for [C₁₅H₁₆ClN₃O₂+H]⁺: 306.1004, found: 306.1007. HPLC (Chiralpak AD-H, *n*-hexane/ethanol = 70/30, 1.0 mL/min, 220 nm) t_R = 9.12 min, 21.32 min.

To a solution of **3aa** (40.6 mg, 0.1 mmol) in EtOH (1 mL) was added Raney Ni (8 mg) and the mixture was stirred at room temperature under H_2 atmosphere (bubble) for 4 h. The conversion was monitored by TLC. The resulting solution was filtered over Celite, and washed with EtOH and ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by column chromatography (CH₂Cl₂/MeOH 10:1) to afford the desired product **6** in 89% yield.

2-(*tert***-Butyl) 5-methyl (5***S***,7***R***,8***S***)-8-(aminomethyl)-7-(4-chlorophenyl)-2,6-diazaspiro[3.4]octane-2,5-dicarboxylate** White solid, yield: 89%; m.p.: 155-157 °C; $[\alpha]_D^{25} = +176.5(c \ 1.00, CH_2Cl_2)$; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J = 7.6, 1.9 Hz, 1H), 7.38 (dd, J = 7.7, 1.6 Hz, 1H), 7.33 – 7.22 (m, 2H), 4.98 (d, J = 5.3 Hz, 1H), 4.88 (d, J = 7.0 Hz, 1H, minor), 4.28 – 4.17 (m, 3H), 4.06 (s, 2H, minor), 4.02 (s, 1H, minor), 3.96 (d, J = 9.0 Hz, 1H, minor), 3.86 (s, 3H), 3.79 (d, J = 9.8 Hz, 1H), 3.74 (d, J = 7.1Hz, 1H, minor), 3.46 (d, J = 9.8 Hz, 1H), 3.35 (d, J = 5.3 Hz, 1H), 2.61 (s, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 156.4, 141.2, 133.4, 128.9 (2C), 128.6 (2C), 79.9, 67.6, 64.8, 56.8, 55.9, 55.0, 52.3, 45.6, 40.5, 28.4 (3C). HRMS (ESI-TOF) calcd for [C₂₀H₂₈ClN₃O₄+H]⁺: 410.1841, found: 410.1845. HPLC (Chiralpak AD-H, *n*-hexane/ethanol = 85/15, 1.0 mL/min, 220 nm) t_R = 35.65 min, 37.76 min.

Proposed transition states of the diastereodivergent asymmetric 1,3-

dipolar cycloaddition

The diastereodivergent observed in this asymmetric 1,3-DC cycloaddition can be rationalized by the proposed transition state shown in Figure S1. With the ferrocene *P*,*N*-ligands **L6**, the *in situ*-formed azomethine ylide is coordinated to the metallic center and oriented in such way because of the steric repulsion between the phenyl group of the ylide and the phenyl ring on the phosphorus atom of the chiral ligand, and the highly steric congestion formation by the cyanogroup leads the dipolarophile (**2a**) approach azomethine ylide through *Re* (C=N) face attack and forms the *exo*-(5*S*,7*R*,8*R*)-**3aa** (**TS1**). With the *N*,*O*-ligands **L7**, the cyanogroup of **2a** could coordinate with the Cu(I) center, which can stabilize the negatively charged nitrogen atom in the proposed transition states (**TS2**).⁵ An *exo* approach of dipolarophile (**2a**) to the copper(I) complex occurred which is compatible with the experimental results.

Fig S1. Proposed transition states.

References

- (1) (a) A. López-Pérez, J. Adrio, J. C. Carretero, J. Am. Chem. Soc. 2008, 130, 10084. (b) C.-J. Wang, G. Liang, Z.-Y. Xue, F. Gao, J. Am. Chem. Soc. 2008, 130, 17250.
- (2) B. A. Chalyk, A. A. Isakov, M. V. Butko, K. V. Hrebeniuk, O. V. Savych, O. V. Kucher, K. S. Gavrilenko, T. V. Druzhenko, V. S. Yarmolchuk, S. Zozulya, and P. K. Mykhailiuk, *Eur. J. Org. Chem.* 2017, 4530.
- (3) J. Y. Cassayre, P. Renold, T. Pitterna, M. El Qacemi, WO2013026931A1, 2013.
- (4) E. Forcellini, S. Boutin, C.-A. Lefebvre, E. E. Shayhidin, M.-C. Boulanger, G. Rheaume, X. Barbeau, P. Lagüe, P. Mathieu, J.-F. Paquin, *Eur. J. Med. Chem.* 2018, **147**, 130.
- (5) (a) X.-X. Yan, Q. Peng, Y. Zhang, K. Zhang, W. Hong, X.-L. Hou, Y.-D. Wu, *Angew. Chem., Int. Ed.* 2006, 45, 1979. (b) H. Y. Kim, H.-J. Shih, W. E. Knabe, K. Oh, *Angew. Chem., Int. Ed.* 2009, 48, 7420. (c) T.-L. Liu, Z.-L. He, H.-Y. Tao, Y.-P. Cai and C.-J. Wang, *Chem. Commun.*, 2011, 47, 2616-2618.

The absolute configuration determination of 3fa and 4fa

Fig S2. X-ray structure of (*5S*,7*R*,8*R*)-**3fa** Ellipsoids are drawn at the 30% probability level.

Crystal data and structure refinement for CCDC 1914517

(CCDC **1914517** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.)

Table S2. Crystal data and structure refinement for (5*S*,7*R*,8*R*)-3fa.

Identification code	(5 <i>S</i> ,7 <i>R</i> ,8 <i>R</i>)- 3fa	
Empirical formula	C ₂₀ H ₂₄ Br N ₃ O ₄	
Formula weight	450.33	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 2	
Unit cell dimensions	a = 10.2024(3) Å	α=90°.
	b = 31.7463(10) Å	β= 90°.
	c = 6.5544(2) Å	$\gamma = 90^{\circ}$.
Volume	2122.89(11) Å ³	
Z	4	
Density (calculated)	1.409 Mg/m ³	
Absorption coefficient	1.966 mm ⁻¹	
F(000)	928	
Crystal size	0.200 x 0.170 x 0.130 mm ³	
Theta range for data collection	2.373 to 25.990°.	

Index ranges	-12<=h<=12, -39<=k<=35, -8<=l<=7
Reflections collected	11503
Independent reflections	4090 [R(int) = 0.0271]
Completeness to theta = 25.242°	98.6 %
Absorption correction	Mutli-scan
Max. and min. transmission	0.7456 and 0.5520
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4090 / 1 / 262
Goodness-of-fit on F ²	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0369, wR2 = 0.0832
R indices (all data)	R1 = 0.0552, wR2 = 0.0905
Absolute structure parameter	0.004(6)
Largest diff. peak and hole	0.496 and -0.532 e.Å ⁻³

Fig S3. X-ray structure of (*5R*,*7S*,*8R*)-**4fa** Ellipsoids are drawn at the 30% probability level.

Crystal data and structure refinement for CCDC 1914518

(CCDC **1914518** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html.)

Table S3. Crystal data and structure refinement for (5R,7S,8R)-4fa.

Identification code	(5 <i>R</i> ,7 <i>S</i> ,8 <i>R</i>)-4fa
Empirical formula	C ₂₀ H ₂₄ Br N ₃ O ₄

Formula weight	450.33	
Temperature	193(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 6.4829(2) Å	α=90°.
	b = 12.2525(3) Å	β= 90°.
	c = 26.9553(7) Å	$\gamma = 90^{\circ}$.
Volume	2141.11(10) Å ³	
Ζ	4	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	1.949 mm ⁻¹	
F(000)	928	
Crystal size	$0.170 \ x \ 0.140 \ x \ 0.100 \ mm^3$	
Theta range for data collection	3.023 to 25.994°.	
Index ranges	-7<=h<=7, -15<=k<=13, -33<=l<=28	
Reflections collected	10450	
Independent reflections	4108 [R(int) = 0.0299]	
Completeness to theta = 25.242°	99.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.3565	
Refinement method	Full-matrix least-squares on F ²	!
Data / restraints / parameters	4108 / 1 / 262	
Goodness-of-fit on F ²	1.042	
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0731	
R indices (all data)	R1 = 0.0389, wR2 = 0.0760	
Absolute structure parameter	0.021(6)	
Largest diff. peak and hole	0.541 and -0.487 e.Å ⁻³	

Chiral HPLC Chromatograms

¹H NMR and ¹³C NMR spectra

¹H NMR spectrum of compound **3aa** (CDCl₃)

¹H NMR spectrum of compound **3ba** (CDCl₃)

¹³C NMR spectrum of compound **3ba** (CDCl₃)

¹H NMR spectrum of compound **3ca** (CDCl₃)

¹³C NMR spectrum of compound **3ca** (CDCl₃)

120 110 100 90 80 f1 (ppm) ò -10 140 130

¹H NMR spectrum of compound **3da** (CDCl₃)

¹³C NMR spectrum of compound **3ia** (CDCl₃)

¹³C NMR spectrum of compound **3ja** (CDCl₃)

¹³C NMR spectrum of compound **3ka** (CDCl₃)

¹³C NMR spectrum of compound **3la** (CDCl₃)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR spectrum of compound **3pa** (CDCl₃)

110 100 90 f1 (ppm) . 170 130 120 -10 ¹H NMR spectrum of compound **3ac** (CDCl₃)

¹³C NMR spectrum of compound **3ac** (CDCl₃)

120 110 100 90 80 f1 (ppm) . 190 . 40 -10

¹H NMR spectrum of compound **3ae** (CDCl₃)

¹³C NMR spectrum of compound **3ae** (CDCl₃)

¹H NMR spectrum of compound **3af** (CDCl₃)

¹H NMR spectrum of compound **3ag** (CDCl₃)

¹³C NMR spectrum of compound **3ag** (CDCl₃)

172.73	137.85 134.47 129.13 128.18	117.42	77.38 77.06 76.75	55.05 52.59 47.88	34.13 30.55
ì	1157	ì	\checkmark	171	ΪΪ

¹³C NMR spectrum of compound **3ah** (CDCl₃)

120 110 100 90 f1 (ppm) -10

¹H NMR spectrum of compound 4aa (CDCl₃)

¹³C NMR spectrum of compound 4aa (CDCl₃)

110 100 90 80 f1 (ppm) . 190 130 120 -10

¹³C NMR spectrum of compound **4da** (CDCl₃)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR spectrum of compound **4fa** (CDCl₃)

¹³C NMR spectrum of compound 4fa (CDCl₃)

130 120 110 100 90 f1 (ppm) . 190 -10 ¹H NMR spectrum of compound 40a (CDCl₃)

¹³C NMR spectrum of compound **4oa** (CDCl₃)

¹H NMR spectrum of compound **4ab** (CDCl₃)

¹³C NMR spectrum of compound **4ab** (CDCl₃)

¹H NMR spectrum of compound 4ae (CDCl₃)

¹³C NMR spectrum of compound 4ae (CDCl₃)

¹H NMR spectrum of compound **5** (CDCl₃)

¹³C NMR spectrum of compound 6 (CDCl₃)

