Enantioselective Formal Synthesis of (+)-Madangamine A

Celeste Are, Maria Pérez, Joan Bosch, and Mercedes Amat*

Supporting Information Available
I) Experimental procedures and spectroscopic data: pages S2-S18
II) Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and HRMS: pages S19-S37

General Experimental Information

All air sensitive reactions were performed under a dry argon or nitrogen atmosphere with dry, freshly distilled solvents using standard procedures. Evaporation of solvent was accomphished with a rotatory evaporator. Thin-layer chromatography was done on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$), and the spots were located by UV light and a $1 \% \mathrm{KMnO}_{4}$ solution. Chromatography refers to flash column chromatography and was carried out on SiO_{2} (silica gel 60, 230-400 mesh). Unless otherwise indicated, NMR spectra were recorded at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100.6 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, and chemical shifts are reported in δ values, in parts per million (ppm) relative to $\mathrm{Me}_{4} \mathrm{Si}(0 \mathrm{ppm})$ or relative to residual chloroform ($7.26 \mathrm{ppm}, 77.0 \mathrm{ppm}$) as an internal standard. Data are reported in the following manner: chemical shift, multiplicity, coupling constant (J) in hertz (Hz), integrated intensity, and assignment (when possible). Assignments and stereochemical determinations are given only when they are derived from definitive two-dimensional NMR experiments (g-HSQC-COSY). IR spectra were performed in a spectrophotometer Nicolet Avatar 320 FT-IR and only noteworthy IR absorptions (cm^{-1}) are listed. Optical rotations were measured on a Perlin-Elmer 241 polarimeter. $[\alpha]_{D}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. High resolution mass spectra (HMRS) were performed by Centres Científics i Tecnològics de la Universitat de Barcelona.

(4R,4aR,8aS)-2-(tert-Butoxycarbonyl)-4-[2-(1,3-dioxolan-2-yl)ethyl]-4-(hydroxymethyl)-
1,2,3,4,4a,5,8,8a-octahydroisoquinoline (3): First step: Liquid ammonia (15 mL) was condensed at $-78^{\circ} \mathrm{C}$ in a three-necked, 100 mL round-bottomed flask equipped with a coldfinger condenser charged with dry ice-acetone, and then a solution of lactam $2(214 \mathrm{mg}, 0.50 \mathrm{mmol})$ in anhydrous THF (3 mL) was added. The temperature was raised to $-33^{\circ} \mathrm{C}$ and sodium metal was added in small portions until the blue color persisted. The mixture was stirred at $-33^{\circ} \mathrm{C}$ for 2 min . The reaction was quenched by the addition of solid $\mathrm{NH}_{4} \mathrm{Cl}$ until the blue color disappeared, and the mixture was stirred at room temperature for 4 h . The residue was digested at room temperature with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting suspension was filtered through Celite ${ }^{\circledR}$. The solution was concentrated under reduced pressure. Second step: The resulting residue was added under an argon atmosphere to a solution of $\mathrm{LiAlH}_{4}(278 \mathrm{mg}, 7.35 \mathrm{mmol})$ in anhydrous dioxane (17 mL), and the mixture was stirred at reflux overnight. The reaction was quenched with water and 10% aqueous NaOH . The aqueous layer was extracted with EtOAc , and the combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated to give a crude amino alcohol, which was used in the next step without purification. Third step: $\mathrm{Boc}_{2} \mathrm{O}$ ($119 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added dropwise under an inert atmosphere at room temperature to a solution of the above amino alcohol in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and the resulting mixture was stirred for 20 h . The solution was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated. Flash chromatography (9:1 to $1: 1$ hexane-EtOAc) of the residue gave compound 3 ($83 \mathrm{mg}, 45 \%$ overall yield) as a white foam: $[\alpha]_{\mathrm{D}}{ }^{22}=-8.34$ (c 0.44 in CHCl_{3}); IR (film): $v=3479$ $(\mathrm{OH}), 1681(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, rotamers) $1.45\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right]$, 1.58-1.76 (4 H, m, H-1', H-2'), 1.78-1.96 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8, \mathrm{H}-4 \mathrm{a}$), 1.98-2.30 (4 H, m, H-5, H-8, H-8a), 2.67-2.77 (2 H, m, H-1, H-3), 3.42 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}$), 3.59-3.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3$), 3.85-3.98 (4 H, $\left.2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.87\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}$, rotamers) 21.6 (C-5), $24.0\left(\mathrm{C}-1^{\prime}\right), 27.2$ (C-2'), 27.9 (c-8a), 28.4 [C-8, (CH_{3}) C], 34.2 (C-4a), $45.4(\mathrm{C}-1, \mathrm{C}-3), 68.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 64.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 79.5\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}\right], 104.7\left(\mathrm{C}-3^{\prime}\right), 124.8(\mathrm{C}-6, \mathrm{C}-7)$; HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{5}+\mathrm{Na}\right]^{+}: 390.2251$, found: 390.2263.

(4R,4aR,8aS)-4-(Azidomethyl)-2-(tert-butoxycarbonyl)-4-[2-(1,3-dioxolan-2-yl)ethyl]-1,2,3,4,4a,5,8,8a-octahydroisoquinoline (4): First Step: Anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($0.52 \mathrm{~mL}, 3.75 \mathrm{mmol}$) and methanesulfonyl chloride ($0.29 \mathrm{~mL}, 3.75 \mathrm{mmol}$) were added at $0{ }^{\circ} \mathrm{C}$ under an inert atmosphere to a stirred solution of alcohol 3 ($458 \mathrm{mg}, 1.25 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 4 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated to give the mesylate as a yellow oil, which was used in the next step without purification. Second Step: NaN_{3} (471 mg, 7.25 mmol) was added under an inert atmosphere to a solution of the above mesylate in anhydrous DMF (3.6 mL) and the mixture was heated to $90^{\circ} \mathrm{C}$. After 48 h , more NaN_{3} ($471 \mathrm{mg}, 7.25 \mathrm{mmol}$) was added and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ for an additional 48 h . The reaction was quenched with distilled water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 9:1 hexane-EtOAc) of the resulting oil gave azide 4 ($387 \mathrm{mg}, 79 \%$) as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{22}=-35.18$ (c 0.6 in CHCl_{3}); IR (film): $v=2100\left(\mathrm{~N}_{3}\right)$, 1693 (CO) cm ${ }^{-1}$; $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, rotamers) $1.42\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.49-$ 1.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}, \mathrm{H}-5$), 1.64-1.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}, \mathrm{H}-5$), 1.75-1.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.90-1.98 ($1 \mathrm{H}, \mathrm{m}$, H-4a), 2.00-2.07 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), 2.11-2.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-2^{\prime}$), 2.59-2.70 (2 H, m, H-1, H-3), 3.17 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.53-3.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3), 3.81-3.92\left(4 \mathrm{H}, 2 \mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.8$ Hz, H-3'), 5.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6, \mathrm{H}-7$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, rotamers) 21.5 (C-2'), 25.7 (C-1'), 27.7 (C-8a), $27.8(\mathrm{C}-5), 28.3\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{C}-8\right], 34.7(\mathrm{C}-4 \mathrm{a}), 39.7(\mathrm{C}-4), 43.3,44.1,44.4,44.9(\mathrm{C}-3, \mathrm{C}-$ 1), $53.9\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 64.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 79.6\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 104.6\left(\mathrm{C}-3^{\prime}\right), 123.9,124.5(\mathrm{C}-6, \mathrm{C}-7), 154.9$ (NCOO); HRMS (ESI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 415.2316$, found: 415.2334.

(4R,4aR,6S,7S,8aS)-2-(tert-Butoxycarbonyl)-4-[2-(1,3-dioxolan-2-yl)ethyl]-7-hydroxy-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline (5): First step: m-СРBA (317 mg, $1.41 \mathrm{mmol}, \leq 77 \%$ of purity) was added to a cold ($0{ }^{\circ} \mathrm{C}$) solution of azide 4 ($327 \mathrm{mg}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was allowed to warm slowly to room temperature. After 5 h , a solution of saturated aqueous NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$ was added, and the resulting mixture was stirred for an additional 45 minutes. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were washed with a 10% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give the azido epoxide intermediate, which was used in the next step without purification. Second step: $\mathrm{Me}_{3} \mathrm{P}(1.33 \mathrm{~mL}$ of a 1 M solution in THF, 1.33 mmol) was added to a solution of the above azido epoxide in THF $(16 \mathrm{~mL})$ and water (1.6 mL), and the resulting mixture was stirred at room temperature overnight and concentrated to afford the diazatricyclic alcohol derivative. Third step: $\mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL}, 0.83$ mmol) was added dropwise at $0^{\circ} \mathrm{C}$ under an inert atmosphere to a stirring solution of the above aminoalcohol in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$. A solution of p-toluenesulfonyl chloride (158 mg , $0.83 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added, and the stirring was continued at $0^{\circ} \mathrm{C}$ for 2.5 h . A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (9:1 to 1:1 hexane-EtOAc) of the residue afforded the protected tricyclic compound 5 ($302 \mathrm{mg}, 68 \%$) as a pale yellow oil: $[\alpha]_{\mathrm{D}}{ }^{22}=$ +24.01 (c 3.15 in CHCl_{3}); IR (film): $v=3444(\mathrm{OH}), 1693(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}^{2}\right.$, COSY, HSQC, rotamers) 1.35, 1.41 [13 H, m, ($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}\right], 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}), 1.59-1.64$ (3 $\mathrm{H}, \mathrm{m}, 2 \mathrm{H}-8, \mathrm{H}-5), 1.94(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=13.6,2.8 \mathrm{~Hz}, \mathrm{H}-5), 1.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}\right)$, 2.60-2.78 (2 H, m, H-1, H-3), $3.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.8 \mathrm{~Hz}, \mathrm{H}-10), 3.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{H}-10), 3.76$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $3.83\left(1 \mathrm{H}\right.$, masked, $\mathrm{H}-7$), $3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.90(2 \mathrm{H}$, masked, $\mathrm{H}-1, \mathrm{H}-3$), 3.96 (1 H, s, H-6), $4.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right)$, $7.22\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}\right.$), $7.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}) ; \delta_{c}$ (100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$, rotamers) $21.1\left(\mathrm{CH}_{3}-\mathrm{Ts}\right)$, $21.9(\mathrm{C}-5), 27.3\left(\mathrm{C}-1^{\prime}\right), 28.2$ [($\left.\left.\mathrm{CH}_{3}\right) \mathrm{C}\right], 29.4$ (C2^{\prime}), 30.7 (8 a), 32.3 (C-8), 32.4 (C-4), 35.2 (C-4a), 46.8 (C-10), 50.8 (C-6), 48.4-49.6 (C-1, C-3), 64.8 $\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 67.3(\mathrm{C}-7), 80.0\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}\right], 104.4$ (C-3'), 127.0 (CH-Ts), 129.9 (CH-Ts), 137.6 (C-Ts), 143.1 (C-Ts), 155.4 (NCOO); HRMS calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}+\mathrm{Na}\right]^{+}: 559.2448$, found: 559.2435.

(4R,4aR,6S,7S,8aS)-7-(Benzoyloxy)-2-(tert-butoxycarbonyl)-4-[2-(1,3-dioxolan-2-yl)ethyl]-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline (6): Triethylamine ($40 \mu \mathrm{~L}, 0.296$ mmol) and DMAP ($2.4 \mathrm{mg}, 0.02 \mathrm{mmol}$) were added under an inert atmosphere to a stirred solution of tricyclic compound 5 ($56 \mathrm{mg}, 0.099 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. After 30 minutes, benzoic anhydride ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added and the resulting mixture was stirred at room temperature overnight. The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (9:1 to 1:1 hexane-EtOAc) of the residue afforded tricyclic compound 6 (40 mg , 65%) as a white foam: IR (film): $v=1714$ (CO), 1682 (CO) cm ${ }^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}\right.$, HSQC, rotamers) 1.37-1.54 [13 H, m, H-1', H-2', ($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.56-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-8), 1.72-1.81$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $1.94(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 2.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{a}), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}\right), 2.58-2.88(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, $\mathrm{H}-3), 3.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{H}-10), 3.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{H}-10)$, 3.73-3.89(2H, masked, H1, H-3), 3.85, $3.96\left(4 \mathrm{H}, 2 \mathrm{~m}, 2 \mathrm{CH}_{2} \mathrm{O}\right), 4.28(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.76\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 5.06(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 7.31$ $(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}), 7.45\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.57\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.81(2 \mathrm{H}, \mathrm{d}, J$ $=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}), 8.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}{ }_{4} \mathrm{Si}\right.$, rotamers) $21.5\left(\mathrm{CH}_{3}-\right.$ Ts), 23.7 (C-5), 27.6 ($\mathrm{C}-1^{\prime}$), 28.3 [(CH_{3})C, C-2’], 29.7 (C-8), 30.0 (C-8a), 31.1 (C-4), 34.8 (C-4a), 47.0 (C-10), 48.1 (C-6), 49.3-49.8 (C-1, C-3), $64.9\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 69.2(\mathrm{C}-7), 79.9\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}\right], 104.3\left(\mathrm{C}-4{ }^{\prime}\right), 127.1$ (CH-Ts), 128.4 ($\mathrm{C}_{6} \mathrm{H}_{5}$), 129.5 ($\mathrm{C}_{6} \mathrm{H}_{5}$), 129.7 (CH-Ts), 133.1 ($\mathrm{C}_{6} \mathrm{H}_{5}$), 137.0 (C-Ts), 143.2 (C-Ts), 155.3 (NCOO), 164.9 (COO); HRMS calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}+\mathrm{H}\right]^{+}: 641.2891$, found: 641.2877.

(4R,4aR,6S,7S,8aS)-2-(tert-Butoxycarbonyl)-4-(3-butynyl)-7-hydroxy-6,4-(iminomethano)-9-(p-toluenesulfonyl)perhydroisoquinoline (7): First step: A 3 N aqueous solution of $\mathrm{HCl}(3.3 \mathrm{~mL}$, $9.9 \mathrm{mmol})$ was added to a solution of compound $6(122 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF (3.3 mL) and the mixture was stirred at room temperature for 2 hours. Saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added until pH 8 , and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated to give the intermediate aldehyde, which was used in the next step without purification. Second step: $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($50 \mathrm{mg}, 0.36$ mmol) and Bestmann reagent ($34 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) were successively added under an inert atmosphere at room temperature to a solution of the above aldehyde in $\mathrm{THF} / \mathrm{MeOH}(7 \mathrm{~mL}, 1: 1)$, and the mixture was stirred at room temperature overnight. The mixture was then filtered through a Celite ${ }^{\circledR}$ pad, and the organic solvent was evaporated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the resulting solution was washed with 5% aqueous NaHCO_{3} and brine. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the residue gave alkyne 7 ($56 \mathrm{mg}, 60 \%$) as a pale yellow foam: $[\alpha]_{\mathrm{D}}{ }^{22}=+32.56$ (c $1.5 \mathrm{in} \mathrm{CHCl}_{3}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}$, rotamers) 1.43 [$9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$], 1.49-1.58 (4 H, m, H-8a, 2H-1', H-8), 1.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{H}-5$), 1.91-2.09 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-4^{\prime}, \mathrm{H}-5,2 \mathrm{H}-2^{\prime}$), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}$), 2.452.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.62-2.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3$), 3.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 3.32 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-10$), 3.70-3.94 (3 H, m, H-1, H-3, H-7), $4.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}), 7.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{Ts}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, rotamers) 12.7 ($\mathrm{C}-2^{\prime}$), 21.5 ($\mathrm{CH}_{3}-\mathrm{Ts}$), 22.5 (C-5), $28.2\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}\right]$, 30.4 (C-4a), 32.2 (C-4), 34.9 (C-8), 35.3 (C-8a, C-1'), 46.5 (C-10), 48.8-49.6 (C-1, C-3), 50.9 (C-6), 67.5 (C-7), 69.0 (C-4'), 79.9 [(CH_{3})C], 126.8 (CH-Ts), 129.8 (CH-Ts), 137.3 (C-Ts), 143.3 (C-Ts), 155.4 (NCOO); HRMS calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{H}\right]^{+}$: 489.2418, found: 489.2401.

(4R,4aR,6S,8aS)-2-(tert-Butoxycarbonyl)-4-(3-butynyl)-6,4-(iminomethano)-7-oxo-9-(ptoluenesulfonyl)perhydroisoquinoline (8): Dess-Martin periodinane ($41 \mathrm{mg}, 0.08 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of tricyclic alcohol 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, and the resulting mixture was stirred at room temperature for 4 h . The solution was poured into a saturated aqueous solution of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$, and the mixture was stirred for an hour at room temperature. The layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 8:2 hexane-EtOAc) of the residue gave ketone 8 ($30 \mathrm{mg}, 77 \%$) as a pale yellow foam: $[\alpha]_{\mathrm{D}}{ }^{22}=+10.66\left(c 1.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, rotamers) 1.28-1.45 [9 H, m, ($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.70(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-8), 1.79-1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{I}^{\prime}\right)$, 2.092.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-4^{\prime}$), 2.19-2.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}$), $2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}\right), 2.37(1 \mathrm{H}$, masked, $\mathrm{H}-8$), 2.41-2.50 (1 H, m, H-5), 2.68-2.93 (3 H, m, H-1, H-3, H-10), 3.59 (1 H, d, J = $12.5 \mathrm{~Hz}, \mathrm{H}-10), 3.71-$ 4.01 (2 H, m, H-1, H-3), 4.37 (1 H, s, H-6), $7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-$ $\mathrm{Ts}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, rotamers) 12.9 ($\mathrm{C}-2^{\prime}$), 21.5 ($\left.\mathrm{CH}_{3}-\mathrm{Ts}\right), 28.2$ [($\left.\left.\mathrm{CH}_{3}\right) \mathrm{C}\right], 29.3(\mathrm{C}-5)$, 34.1 (C-8a, C-1'), 35.8 (C-4a), 36.5 (C-4), 43.3 (C-8), 46.9 (C-10), 56.8 (C-6), 48.4-50.1 (C-1, C-3), 69.5 (C-4'), 80.2 [(CH3)C], 127.7 (CH-Ts), 129.5 (CH-Ts), 134.2 (C-Ts), 143.3 (C-Ts), 155.2 (NCOO), 204.9 (C-7); HRMS calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}+\mathrm{Na}\right]^{+}$: 509.2081, found: 509.2086.

(4R,4aR,6S,8aS) Triyne intermediate (9): Alkyne 8 ($31 \mathrm{mg}, 0.063 \mathrm{mmol}$) and bromo derivative 12 ($45 \mathrm{mg}, 0.127 \mathrm{mmol}$) were added at room temperature under an inert atmosphere to a suspension of Cul ($24 \mathrm{mg}, 0.127 \mathrm{mmol}$), $\mathrm{NaI}(19 \mathrm{mg}, 0.127)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(13 \mathrm{mg}, 0.095 \mathrm{mmol})$ in anhydrous DMF (2 mL). The mixture was stirred overnight at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc were added, and the resulting mixture was filtered through a Celite ${ }^{\circledR}$ pad. The layers were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to $8: 2$ hexane-EtOAc) of the residue gave triyne 9 ($31 \mathrm{mg}, 64 \%$) as an oil: $[\alpha]_{\mathrm{D}}{ }^{22}=+5.59$ (c 1.5 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}$, rotamers) $1.07\left[21 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 1.37\left[9 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.67(2 \mathrm{H}$, m, H-8, H-5), 1.77 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{a}$), $1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1^{\prime}\right)$, 2.11-2.23 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-2^{\prime}$), $2.36(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}-\mathrm{Ts}$), 2.39-2.49 (4 H, m, H-5, H-8, H-11'), 2.71-2.82 (3 H, m, H-10, H-1, H-3), 3.13 (4 H, s, 2H$\left.5^{\prime}, 2 H-8^{\prime}\right), 3.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}, \mathrm{H}-10), 3.78\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-12^{\prime}\right), 3.75-3.93(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1$, H-3), $4.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$, rotamers) $9.8\left(\mathrm{C}-5^{\prime}, \mathrm{C}-8^{\prime}\right), 12.0\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 13.2\left(\mathrm{C}-2^{\prime}\right), 17.9\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 21.4\left(\mathrm{CH}_{3}-\right.$ Ts), 23.1 ($\mathrm{C}-11^{\prime}$), $28.4\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 29.4$ (C-5), 31.4 (C-4), 33.6 ($\mathrm{C}-8 \mathrm{a}$), 34.1 ($\left.\mathrm{C}-1^{\prime}\right), 36.2$ ($\mathrm{C}-4 \mathrm{a}$), 43.1 (C-8), 47.0 (C-10), 48.1-51.0 (C-1, C-3), 56.9 (C-6), 62.2 (C-12'), 74.4, 74.8, 75.0, 75.3, 77.7, 79.5 (C-3', C-4', C-6', C-7', C-9', C-10'), 80.2 [($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 127.7$ (CH-Ts), 129.5 (CH-Ts), 134.4 (C-Ts), 143.9 (C-Ts), 155.0 (NCOO), 204.9 (C-7); HRMS calcd for $\left[\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}+\mathrm{Na}\right]^{+}$: 785.399, found: 785.3992.

8-[(Trisopropylsilyl)oxy]-2,5-octadiyn-1-ol (11): Potassium carbonate ($506 \mathrm{mg}, 3.66 \mathrm{mmol}$) was added at room temperature under an inert atmosphere to a suspension of tosylate $10^{1}(1 \mathrm{~g}$, $2.44 \mathrm{mmol})$, 2-propyn-1-ol ($148 \mu \mathrm{~L}, 2.54 \mathrm{mmol}$), Cul ($465 \mathrm{mg}, 2.44 \mathrm{mmol}$), and $\mathrm{Nal}(366 \mathrm{mg}, 2.44$ mmol) in anhydrous DMF (12 mL). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was filtered through a Celite ${ }^{\circledR}$ pad. After the organic layer was separated, the resulting aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20$ mL). The combined organic extracts were washed with brine (10 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to hexane-EtOAc 9:1) of the residue gave 1,4-diyne 11 ($538 \mathrm{mg}, 75 \%$) as a colorless oil: IR (film): $3332(\mathrm{OH}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right) 1.03,1.04\left[21 \mathrm{H}, 2 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 2.39(2$ $\mathrm{H}, \mathrm{tt}, \mathrm{J}=7.6,2.4 \mathrm{~Hz}, \mathrm{H}-7), 3.15(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 3.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-8), 4.23(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}$, $\mathrm{H}-1) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.5(\mathrm{C}-4), 11.9\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 17.9\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 23.1$ (C-7), 51.1 (C1), 62.1 (C-8), 74.5 (C-5), 77.9 (C-3), 78.5 (C-2), 80.3 (C-6); HRMS (ESI) calcd for [$\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}+\mathrm{H}$] ${ }^{+}$: 295.2088, found: 295.2090.

[^0]

1-Bromo-8-[(triisopropylsilyl)oxy]-2,5-octadiyne (12): First step: Triethylamine (610 $\mu \mathrm{L}, 4.38$ mmol), and methanesulfonyl chloride ($454 \mu \mathrm{~L}, 5.84 \mathrm{mmol}$) were added dropwise at $0{ }^{\circ} \mathrm{C}$ under an inert atmosphere to a solution of alcohol 11 ($860 \mathrm{mg}, 2.92 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and between 10 and $20^{\circ} \mathrm{C}$ for 1.5 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford the mesylate, which was used in the next step without purification. Second step: A solution of $\mathrm{LiBr}(2.5 \mathrm{~g}, 4.38 \mathrm{mmol})$ in anhydrous THF (20 mL) was added under an inert atmosphere at $0^{\circ} \mathrm{C}$ to a solution of the above mesylate (2.92 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The mixture was stirred at room temperature overnight. Water was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the residue afforded bromo derivative 12 (760 $\mathrm{mg}, 73 \%)$ as an oil: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right) 1.05,1.06$ [21 H, 2s, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 2.41$ (2 H, m, J = 6.8, 2.4 Hz, H-7), 3.20(2 H, t, J = 2.4 Hz, H-4), 3.78 (2 H, t, J = 7.2 Hz, H-8), 3.90 (2 H, $\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{H}-1) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 10.1(\mathrm{C}-5), 12.0\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 14.7(\mathrm{C}-8), 17.9$ [(CH3) $)_{2} \mathrm{CH}$], $23.1(\mathrm{C}-7), 62.1$ (C-8), $74.0(\mathrm{C}-5), 75.3$ (C-3), 78.3 (C-2), 81.8 (C-6); HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{BrOSi}+\mathrm{H}\right]^{+}: 357.1244$, found: 357.1232.

(2Z,5Z)-1-Bromo-8-[(triisopropylsilyl)oxy]-2,5-octadiene (13): First step: Ethylenediamine (0.83 $\mathrm{mL}, 12.42 \mathrm{mmol}$) was added at room temperature under an argon atmosphere to a solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.31 \mathrm{~g}, 9.28 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(413 \mathrm{mg}, 10.9 \mathrm{mmol})$ in anhydrous MeOH (185 $\mathrm{mL})$. Then, diyne 11 ($1.68 \mathrm{~g}, 5.45 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL})$ was added and the argon atmosphere was replaced with hydrogen. The mixture was vigorously stirred for one hour and filtered through a Celite ${ }^{\circledR}$ pad. The filtrate was concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with brine, dried over anhydrous MgSO_{4}, and concentrated to give the corresponding diene, which was used in the next step without purification. Second step: Methanesulfonyl chloride ($0.51 \mathrm{~mL}, 6.55 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.1$ $\mathrm{mL}, 7.64 \mathrm{mmol}$) were added under an inert atmosphere at $0^{\circ} \mathrm{C}$ to a solution of the above diene in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$, and the mixture was stirred at room temperature for 3 hours. The reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated to give the mesylate, which was used in the next step without further purification. Third step: A solution of $\operatorname{LiBr}(4.73 \mathrm{~g}, 54.5 \mathrm{mmol})$ in anhydrous THF (23 mL) was added at $0{ }^{\circ} \mathrm{C}$ under an inert atmosphere to a solution of the above mesylate in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(17 \mathrm{~mL})$. The resulting mixture was stirred at room temperature overnight. Distilled water was added, and the mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed under reduced pressure. Flash chromatography (hexane to $98: 2$ hexane-EtOAc) of the residue afforded bromo derivative 13 ($1.18 \mathrm{~g}, 60 \%$) as an oil: $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right) 1.06,1.07[21 \mathrm{H}$, $\left.2 \mathrm{~s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 2.36(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-5), 3.70(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-1), 4.04(2$ $\mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{H}-8), 5.40-5.80(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-2, \mathrm{H}-3) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 12.0$ $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 18.0\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 25.4(\mathrm{C}-4), 27.0(\mathrm{C}-1), 31.3(\mathrm{C}-7), 63.0(\mathrm{C}-8), 125.5,127.5,127.8$, $133.9(\mathrm{CH}=)$.

(4R,4aR,6S,8aS)-2-(tert-Butoxycarbonyl)-4-[2-(1,3-dioxolan-2-yl)ethyl]-6,4-(iminomethano)-9-(p-toluenesulfonyl)-7-oxoperhydroisoquinoline (14): Dess-Martin periodinane (1.36 g, 3.21 mmol) was added to an ice-cold solution of alcohol 5 ($574 \mathrm{mg}, 1.08 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11 mL), and the resulting mixture was stirred at room temperature overnight. The reaction was quenched with the addition of a saturated aqueous solution of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1: 1)$, and the resulting mixture was stirred for an hour. The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (9:1 to 1:1 hexane-EtOAc) of the residue gave ketone 14 (538 $\mathrm{mg}, 94 \%$) as a white foam: $[\alpha]_{\mathrm{D}}^{22}=+11.5\left(c 0.59\right.$ in CHCl_{3}); IR (film): $v=1685(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}$, rotamers) $1.32-1.41\left[11 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}, \mathrm{H}-1^{\prime}\right], 1.54-1.58(2 \mathrm{H}, \mathrm{m}$, H-2'), 1.63-1.72 (3 H, m, H-4a, H-8, H-5), $2.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8 \mathrm{a}), 2.29-2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8), 2.37(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}-\mathrm{Ts}$), 2.42-2.48 (1 H, m, H-5), 2.59, 2.78 (3 H, br. s, H-1, H-3, H-10), 3.55, 3.76 (3 H, br.s, H-1, H-3, H-10), $3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.35(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.85\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 7.23(2$ $\mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}$), $7.59(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts})$; $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, rotamers) 21.4 $\left(\mathrm{CH}_{3}-\mathrm{Ts}\right), 27.5,28.2,29.1,29.4\left[\mathrm{C}-5, \mathrm{C}-2^{\prime}, \mathrm{C}-1^{\prime},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 34.1$ (C-4a), 36.3 (8a), 43.1 (C-8), 47.0 (C10), 56.9 (C-6), 47.2-50.8 (C-1, C-3), $64.9\left(2 \mathrm{CH}_{2} \mathrm{O}\right), 80.1\left[\left(\mathrm{CH}_{3}\right) \mathrm{C}\right], 104.1$ (C-3'), 127.0 (CH-Ts), 129.8 (CH-Ts), 134.4 (C-Ts), 143.5 (C-Ts), 155.0 (NCOO), 205.1 (C-7); HRMS calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}+\right.$ $\left.\mathrm{NH}_{4}\right]^{+}$: 552.2738, found: 552.2736.

(4R,4aR,6S,8aS) Tricyclic derivative (16): Phosphonium salt 15 was dried by repeated dilution with anhydrous 1:1 THF-toluene and concentration under reduced pressure using a rotary evaporator with a dry ice condenser. Sodium bis(trimethylsilyl)amide (1.4 mL of a 1 M solution in THF, 1.4 mmol) was added under an inert atmosphere at $0^{\circ} \mathrm{C}$ to a solution of the dry phosphonium salt 15 ($548 \mathrm{mg}, 1.1 \mathrm{mmol}$) in anhydrous THF (2.0 mL). After 1 h of stirring at this temperature, a solution of tricyclic ketone 14 ($227 \mathrm{mg}, 0.43 \mathrm{mmol}$) in anhydrous THF (3.0 mL) was added, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , at room temperature for 90 min , and at $60^{\circ} \mathrm{C}$ for 3 h . The reaction was quenched with a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with EtOAc, and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 6:4 hexane-EtOAc) of the residue gave an inseparable mixture of Z / E isomers of compound 16 (171 mg, Z/E 8:2 ratio, 65\%): IR (film): $v=1737$, 1693 (CO) cm^{-1}; Major isomer (spectral data from a mixture of isomers) $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, rotamers) 1.32-1.38 [10 H, m, H-5, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.47-1.73\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}^{\prime} \mathbf{1}^{\prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-4 \mathrm{a}\right), 1.77-1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 8a), 1.92-1.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 2.02-2.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}$), 2.11-2.16 (1 H, m, H-5"), 2.22-2.33 (3 H, m, H-7", H-5), 2.34 (3 H, s, CH3-Ts), 2.64 (2 H, br. s, H-1, H-3), 2.86 (2 H, m, H-10, H-2"), 2.98-3.05 (1 $\left.\mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}\right), 3.24-3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83,3.94\left(6 \mathrm{H}, 2 \mathrm{~s}, 2 \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-1, \mathrm{H}-3\right.$ masked), 4.42, $4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 4.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime}\right), 5.06\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right), 5.28-5.29(2 \mathrm{H}$, m, H-3", H-4"), 7.16-7.20 (2 H, m, H-Ts), 7.57-7.61 (2 H, m, H-Ts); $\delta_{c}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, rotamers) $\left.21.4\left(\mathrm{CH}_{3}-\mathrm{Ts}\right), 24.7\left(\mathrm{C}-6^{\prime \prime}\right), 25.1\left(\mathrm{C}-2^{\prime \prime}\right), 25.8\left(\mathrm{C}-5^{\prime \prime}\right), 26.6\left(\mathrm{C}-2^{\prime}\right), 28.3\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 29.7(\mathrm{C}-$ 1^{\prime}), 31.0 (C-5), 33.4 (C-7"), 35.1, 35.2 (C-4a, C-8a), 36.1 (C-8), 46.9, 55.0 (C-6), 48.1 (C-10), 49.8, 50.9 (C-1, C-3), $51.5\left(\mathrm{OCH}_{3}\right), 64.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.7\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 104.3\left(\mathrm{C}-3{ }^{\prime}\right), 127.7,128.2,128.5,129.1$ (C-3", C-4", CH-Ts), 135.7 (C-Ts), 155.15 (NCOO), 174.0 (COO); HRMS (ESI) calcd for [$\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}$ $\left.+\mathrm{NH}_{4}\right]^{+}: 690.3783$, found: 690.3777 .

(4R,4aR,6S,8aS) Alkyne derivative (17): First step: A 3 N aqueous solution of $\mathrm{HCl}(2.4 \mathrm{~mL}, 7.2$ mmol) was added to a solution of the tricyclic compound 16 ($89 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (2.4 mL) and the mixture was stirred for 2 hours at room temperature. Saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added until pH 8 and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated to give the intermediate aldehyde, which was used in the next step without purification. Second step: $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(50 \mathrm{mg}, 0.23 \mathrm{mmol})$ and Bestmann reagent ($20 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) were added under an inert atmosphere at room temperature to a solution of the aldehyde in anhydrous THF/MeOH (4 mL , 1:1), and the resulting mixture was stirred at room temperature overnight. The mixture was filtered through a Celite ${ }^{\circledR}$ pad, and the organic solvent was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the resulting solution was washed with 5% aqueous NaHCO_{3} and brine. The organic layer was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give alkyne 17, which was used in the next step without purification. A sample was purified by flash column chromatography (hexane to $7: 3$ hexaneEtOAc) to give pure alkyne 17: $[\alpha]_{\mathrm{D}}{ }^{22}=+79.6\left(c 0.43\right.$ in CHCl_{3}); IR (film): $v=1732,1682(\mathrm{CO}) \mathrm{cm}$ ${ }^{1}$; $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, selected resonances, rotamers) 1.32-1.48 [11 H, m, H-5, H-4a, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$], 1.62-1.75 ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ", $\mathrm{H}-8 \mathrm{a}$), 1.78-1.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), $2.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right)$, 2.05-2.18 (4 H, m, H-5", H-2'), 2.22-2.27 (1 H, m, H-5), 2.30-2.34 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7^{\prime \prime}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\right.$ Ts), 2.80-3.07 (3 H, m, H-2", H-1, H-10), 3.29-3.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 3.67 (3 H, s, OCH 3), 4.46, 4.95 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6$), $5.09\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$, 5.18-5.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$), 7.16-7.24 (2 H, d, J= 7.6 Hz, H-Ts), $7.57-7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, selected resonances, rotamers) 12.9 (C-2'), 21.4 ($\mathrm{CH}_{3}-\mathrm{Ts}$), 24.7 (C-6"), 25.8 (C-2"), 26.6 (C-5"), 28.3 $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 31.2(\mathrm{C}-5), 33.5\left(\mathrm{C}-7{ }^{\prime \prime}\right), 34.0(\mathrm{C}-8 \mathrm{a}), 35.5(\mathrm{C}-8), 46.9,55.0(\mathrm{C}-6), 51.4\left(\mathrm{OCH}_{3}\right), 69.5\left(\mathrm{C}-4{ }^{\prime}\right)$, 79.7 [($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 128.2,128.4,129.2$ (C-3", C-4", CH-Ts, CH-Ts), 155.1 (NCOO). HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}+\mathrm{NH}_{4}\right]^{+}: 642.3571$, found: 642.3568 .

(4R,4aR,6S,8aS) Dienyne intermediate (18): The above alkyne 17 and bromo derivative 13 (94 $\mathrm{mg}, 0.26 \mathrm{mmol}$) were added at room temperature under an inert atmosphere to a suspension of $\mathrm{Cul}(49 \mathrm{mg}, 0.26 \mathrm{mmol})$, $\mathrm{NaI}(39 \mathrm{mg}, 0.26 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.20 \mathrm{mmol})$ in anhydrous DMF (0.3 mL). The mixture was stirred overnight at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc were added, and the resulting mixture was filtered through a Celite ${ }^{\circledR}$ pad. The layers were separated, and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to $8: 2$ hexane-EtOAc) of the residue gave compound 18 ($38 \mathrm{mg}, 32 \%$ from 16) as an oil: $[\alpha]_{D}{ }^{22}=+56.9$ (c 0.35 in CHCl_{3}); IR (film): $v=1739$, 1694 (CO) cm ${ }^{-1}$; δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}$, selected resonances, rotamers) 1.06 [21 H, m, ($\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 1.31-1.40\left[10 \mathrm{H}, \mathrm{m}, \mathrm{H}-5,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 1.65-1.74(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ " $, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-4 \mathrm{a}), 2.03-$ 2.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime \prime}$), 2.23-2.34 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-11^{\prime}, \mathrm{H}-7^{\prime \prime}, \mathrm{H}-5$), 2.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}$), 2.77-2.82 ($2 \mathrm{H}, \mathrm{m}$, H^{\prime}), 2.84-2.93 (4 H, m, H-2', 2H-5', H-10), 2.99-3.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}$), 3.25-3.37 (1 H, m, H-10), 3.66-3.70 (5 H, m, H-12', OCH_{3}), 4.45, $4.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 5.04-5.10,5.19-5.54,5.59-5.67,5.70-$ 5.79 ($7 \mathrm{H}, 4 \mathrm{~m}, \mathrm{H}-\mathrm{I}^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}^{\prime} \mathrm{C}^{\prime}, \mathrm{H}-7^{\prime}, \mathrm{H}^{\prime} \mathrm{9}^{\prime}, \mathrm{H}-10^{\prime}$), 7.15-7.20 (2 H, m, H-Ts), 7.56-7.60 (2 H, $\left.\mathrm{m}, \mathrm{H}-\mathrm{Ts}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si} \text {, selected resonances, rotamers) } 12.0 \text { [(} \mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 13.3$ (C$\left.2^{\prime}\right), 18.0\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right], 21.4\left(\mathrm{CH}_{3}-\mathrm{Ts}\right), 22.0\left(\mathrm{C}-5^{\prime}\right), 24.7,24.8\left(\mathrm{C}-6^{\prime \prime}\right), 25.8\left(\mathrm{C}-2^{\prime \prime}\right), 26.6\left(\mathrm{C}-5^{\prime \prime}\right), 28.3$ $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 30.2\left(\mathrm{C}-8^{\prime}\right), 31.2(\mathrm{C}-5), 33.5$ (C-7"), 35.0, 35.5, 35.7 (C-4a, C-8a, C-8), 46.9, 55.0 (C-6), 48.1-50.3 (C-1, C-3, C-10), $51.5\left(\mathrm{OCH}_{3}\right), 63.1\left(\mathrm{C}-12^{\prime \prime}\right), 79.7\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 125.0,127.8,128.8,129.1$, 129.2, 129.9 (C-3", C-4", C-6', C-7', C-9', C-10', C-Ts), 155.1 (NCOO), 174.1 (COO); HRMS (ESI) calcd for $\left[\mathrm{C}_{52} \mathrm{H}_{80} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}+\mathrm{NH}_{4}\right]^{+}$: 922.5794, found: 922.5786.

18

44% overall

19 added at room temperature under an argon atmosphere to a solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}$, $0.06 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(3 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(1.2 \mathrm{~mL})$. Then, dienyne 18 (31 $\mathrm{mg}, 0.03 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(20 \mathrm{~mL})$ was added and the argon atmosphere was replaced with hydrogen. The mixture was vigorously stirred for one hour, filtered through Celite ${ }^{\circledR}$, and concentrated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was washed with brine, dried over anhydrous MgSO_{4}, and concentrated to give the corresponding triene, which was used in the next step without purification. HRMS (ESI) calcd for $\left[\mathrm{C}_{52} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SSi}+\mathrm{NH}_{4}\right]^{+}$: 924.5950, found: 924.5938. Second step: A 2 N aqueous solution of $\mathrm{HCl}(0.4 \mathrm{~mL}, 0.8 \mathrm{mmol})$ was added to a solution of the above triene in $\mathrm{MeOH}(3 \mathrm{~mL})$, and the mixture was stirred for 20 minutes at room temperature. Saturated aqueous NaHCO_{3} was added until pH 7, and the methanol was evaporated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic extracts were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give the crude alcohol. Third step: p-Toluenesulfonyl chloride ($11 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added at room temperature under an inert atmosphere to a solution of the above alcohol, $\mathrm{Et}_{3} \mathrm{~N}(17 \mu \mathrm{~L}$, $0.12 \mathrm{mmol})$, and DMAP ($0.7 \mathrm{mg}, 6 \mu \mathrm{~mol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$, and the mixture was stirred for 15 hours. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. Flash chromatography (hexane to 7:3 hexane-EtOAc) of the residue afforded tosylate 19 ($12 \mathrm{mg}, 44 \%$) as an oil: $[\alpha]_{\mathrm{D}}{ }^{22}=+47.3$ (c $0.23 \mathrm{in} \mathrm{CHCl}_{3}$); IR (film): $v=1738,1693(\mathrm{CO}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}, \mathrm{COSY}, \mathrm{HSQC}\right.$, selected resonances, rotamers) 1.31-1.45 [10 H, m, H-5, ($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right]$, 1.57-1.63 (3 H, m, H-6", H-4a), 2.03-2.17 (2 H, m, H$5^{\prime \prime}$), 2.22-2.48 ($5 \mathrm{H}, \mathrm{m}, \mathrm{H}-11^{\prime}, \mathrm{H}-\mathrm{7}^{\prime \prime}, \mathrm{H}-5$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}\right), 2.45$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}$), 2.67-2.96 (6 H, m, H-8', H-2", H-5'), 3.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), $3.35(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(2 \mathrm{H}, \mathrm{m}$, H-12'), 4.45, 4.94 (1 H, s, H-6), 5.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-12$), 5.25-5.53 (9 H, m, H-1", H-3", H-4", H-3', H$4^{\prime}, \mathrm{H}^{\prime} 6^{\prime}, \mathrm{H}-7^{\prime}, \mathrm{H}^{\prime} 9^{\prime}, \mathrm{H}-10^{\prime}$), 7.16-7.20 (2 H, m, H-Ts), 7.34 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}$), 7.57-7.61 (2 H, m, H-Ts), 7.79 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{Ts}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$, selected resonances, rotamers) 21.4, 21.6 ($\mathrm{CH}_{3}-\mathrm{Ts}$), 22.7 (C-5’), 24.7, 24.8 (C-6"), 25.8 (C-2"), 26.6 (C-5"), 28.3 $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 33.5$ (C-7"), 35.5, 35.8 (C-4a, C-8a), 46.9, 55.1 (C-6), 47.5-50.0 (C-1, C-3, C-10), 51.5 $\left(\mathrm{OCH}_{3}\right), 69.7\left(\mathrm{C}-12{ }^{\prime \prime}\right)$, $79.6\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right], 127.9,128.3,128.5,129.2,129.6,129.8\left(\mathrm{C}-3^{\prime \prime}, \mathrm{C}-4{ }^{\prime \prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-\right.$ $\left.4^{\prime}, \mathrm{C}-6^{\prime}, \mathrm{C}-7^{\prime}, \mathrm{C}-9^{\prime}, \mathrm{C}-10^{\prime}, \mathrm{C}-\mathrm{Ts}\right), 155.2$ (NCOO), 174.1 (COO); HRMS (ESI) calcd for [$\mathrm{C}_{50} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}_{2}+$ $H]^{+}$: 905.3720, found: 905.3710.

(4R,4aR,6S,8aS) Pentacyclic lactam (21): First step: TFA ($0.12 \mathrm{~mL}, 1.4 \mathrm{mmol})$ was added under an inert atmosphere to a solution of tosylate 19 ($20 \mathrm{mg}, 0.022 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4$ mL), and the mixture was stirred at room temperature for 30 minutes. The solvent was removed, and the resulting residue was dissolved in toluene and evaporated (two times) to give the crude secondary amine, which was taken in anhydrous MeCN (20 mL). N,N-Diisopropylethylamine ($0.02 \mathrm{~mL}, 0.12 \mathrm{mmol}$) was added at room temperature under an inert atmosphere to the above solution and the mixture was stirred overnight at $70^{\circ} \mathrm{C}$. The solvent was evaporated under reduced pressure. Flash chromatography (hexane to 1:1 hexane-EtOAc) of the residue afforded crude tetracycle 20 (6 mg), which was purified by semipreparative HPLC: $\delta_{H}(500 \mathrm{MHz}, 1.7 \mathrm{~mm}$ microcryoprobe, toluene-d8, HSQC, selected resonances) 1.75 (1 H, m, H-4a), 2.08-2.20 (4 H, m, $\mathrm{CH}_{2} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{~N}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Ts}\right), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3,75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-3), 4.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6)$, 5.15-5.53 (9 H, m, =CH), 7.00-7.10 (2 H, m, H-Ts), 7.80-7.88 (2 H, m, H-Ts); HRMS (ESI) calcd for $\left[\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}+\mathrm{H}\right]^{+}$: 633.3721, found: 633.3720. Second step: Sodium metal ($11 \mathrm{mg}, 0.43 \mathrm{mmol}$) was added at room temperature to a solution of naphthalene ($29 \mathrm{mg}, 0.22 \mathrm{mmol}$) in anhydrous THF (1 mL). After stirring for 2 h , part of the mixture (0.4 mL) was added at $-78^{\circ} \mathrm{C}$ to a solution of sulfonamide $\mathbf{2 0}(5 \mathrm{mg}, 0.007 \mathrm{mmol})$ in anhydrous THF (0.8 mL), and the resulting mixture was stirred for 10 min . A few drops of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were carefully added, and the resulting solution was dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to give a sensitive crude amino ester. Third step: A solution of LiOH (0.6 mL of a 1 M solution in water, 0.6 mmol) was added to a stirred solution of the above amino ester in THF $(0.5 \mathrm{~mL})$, and the mixture was stirred at room temperature for 3.5 h . The solution was concentrated under reduced pressure to give the crude amino acid. Four step: $N, N-$ Diisopropylethylamine ($6 \mu \mathrm{~L}, 0.035 \mathrm{mmol}$) and 2-chloro-1-methylpyridinium iodide ($9 \mathrm{mg}, 0.035$ mmol) were added at room temperature under an inert atmosphere to a solution of the above amino acid in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, and the mixture was stirred overnight at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Flash chromatography (hexane to 1:1 hexane-EtOAc) of the residue afforded pentacyclic lactam 21^{2} ($1.5 \mathrm{mg}, 20 \%$ from 19): HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}: 447.3370$, found: 447.3376.

[^1]
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

$100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

5
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

$100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

8
$100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

11
100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

[^2]

OTIPS
12
100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

13
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

13
100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

[^3]
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

$100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

16
100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

17
$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

$400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{~S}$

100.6 MHz; $\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$

Ex9 m/z 633 _Tolueno-d_24C_RT_190219

$500 \mathrm{MHz} ; 1.7 \mathrm{~mm}$ microcryoprobe;
toluene-d8

HSQC
f59 m/z 633
Ext-EX38783_Tolueno-d_24C_RT_190219

EVCaliour. Mutustra_3_con Registre 2018111109	11/28/2018 8:58:36 PM	Anayst: AAA Ensturment: LTO.O.Dtrap
Registre 2018111109		instrument: LTO O

[^0]: ${ }^{1}$ T. Suto, Y. Yanagita, Y. Nagashima, S. Takikawa, Y. Kurosu, N. Matsuo, T. Sato and N. Chida, J. Am. Chem. Soc. 2017, 139, 2952.

[^1]: ${ }^{2}$ T. Suto, Y. Yanagita, Y. Nagashima, S. Takikawa, Y. Kurosu, N. Matsuo, T. Sato and N. Chida, J. Am. Chem. Soc. 2017, 139, 2952.

[^2]: $\begin{array}{ll}60 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15 & 10 & 5\end{array}$

[^3]: $\begin{array}{lllllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

