Supplementary Information

COMPUTATIONAL METHODS:

All calculations have been performed using density functional methods as implemented in CP2k program package.¹⁴ The CP2k package utilizes a hybrid basis set formalism known as Gaussian and Plane Wave Method¹ (GPW) where the Kohn–Sham orbitals are expanded in terms of contracted Gaussian type orbitals (GTOs), while an auxiliary plane wave basis set is used to expand the electronic charge density. A double-ζ GTH basis set and their relativistic normconserving pseudo potentials (Goedecker, Teter, and Hutter)³ optimized for PBE were used in addition to a plane wave basis set with an energy cut-off of 400 Ry. All calculations were carried out with DZVP-MOLOPT-GTH (valence doublezeta (ζ) plus polarization, molecularly optimized, Goedecker-Teter-Hutter) basis set for all atoms (H, C, O, S, Cl) and DZVP-MOLOPT-SR-GTH (valence double-zeta (ζ) plus polarization, molecularly optimized, short-range Goedecker-Teter-Hutter) basis set for Au and Mn as implemented in the CP2k program package.¹⁻⁴ And the pseudo-potential used where GTH-pseud-potential (Goedecker-Teter-Hutter). For our calculations, we have employed PBE functional as implemented in CP2k package.² The unit cell are designed to obtain in both the cases, a three layered Au(111) surface applying periodic boundary conditions over an orthorhombic simulation cell. The convergence criteria of 1 x 10⁻⁶ Hartree for the SCF energy had been employed throughout.² The simulation cell has been employed such that x and y axes are on the surface plane as reference axes. The size along z-axis is kept more than 60 Å. An empty space is therefore left to prevent inter cells interaction and polarization effects. To account for the dispersion a DFTD2 approach has been used throughout the calculations.

Exchange part of the Hamiltonian adapted for complex 1 is given below,

 \hat{H}_{Ex}

$$= -J_{1} [(\mathring{s}_{2} \mathring{s}_{5} + \mathring{s}_{3} \mathring{s}_{6} + \mathring{s}_{4} \mathring{s}_{7} + \mathring{s}_{11} \mathring{s}_{15} + \mathring{s}_{12} \mathring{s}_{16} + \mathring{s}_{13} \mathring{s}_{14})] - J_{2} [(\mathring{s}_{2} \mathring{s}_{6} + \mathring{s}_{3} \mathring{s}_{7} + \mathring{s}_{4} \mathring{s}_{5} - J_{3} [(\mathring{s}_{5} \mathring{s}_{6} + \mathring{s}_{5} \mathring{s}_{7} + \mathring{s}_{6} \mathring{s}_{7} + \mathring{s}_{14} \mathring{s}_{15} + \mathring{s}_{15} \mathring{s}_{16} + \mathring{s}_{14} \mathring{s}_{16})] - J_{4} [(\mathring{s}_{2} \mathring{s}_{3} + \mathring{s}_{2} \mathring{s}_{4} + \mathring{s}_{11} \mathring{s}_{12} + \mathring{s}_{11} \mathring{s}_{12} + \mathring{s}_{12} \mathring{s}_{13})] - J_{5} [(\mathring{s}_{1} \mathring{s}_{2} + \mathring{s}_{1} \mathring{s}_{3} + \mathring{s}_{1} \mathring{s}_{4} + \mathring{s}_{1} \mathring{s}_{11} + \mathring{s}_{1} \mathring{s}_{12} + \mathring{s}_{1} \mathring{s}_{13})] - J_{6} [(\mathring{s}_{5} \mathring{s}_{10} + \mathring{s}_{6} \mathring{s}_{8} + \mathring{s}_{7} \mathring{s}_{9} + \mathring{s}_{14} \mathring{s}_{18} + \mathring{s}_{15} \mathring{s}_{19} + \mathring{s}_{16} \mathring{s}_{17})] - J_{7} [(\mathring{s}_{2} \mathring{s}_{10} + \mathring{s}_{3} \mathring{s}_{8} + \mathring{s}_{4} \mathring{s}_{9} + \mathring{s}_{11} \mathring{s}_{19} + \mathring{s}_{12} \mathring{s}_{17} + \mathring{s}_{13} \mathring{s}_{18})] - J_{8} [(\mathring{s}_{5} \mathring{s}_{9} + \mathring{s}_{6} \mathring{s}_{10} + \mathring{s}_{7} \mathring{s}_{8} + \mathring{s}_{14} \mathring{s}_{19} + \mathring{s}_{15} \mathring{s}_{17} + \mathring{s}_{16} \mathring{s}_{18}]]$$

 Table S1: Comparison of the magnetic exchange coupling parameters of the {Mn19} as calculated by using PBE functional

functional calculated by Ruiz by		Ruiz et	al		This Wo	with th the Eli applyi	
the PBE and	Exchange	bridging			bridging		B3LYI
functional.5	Coupling	ligands	J _{PBE}	$J_{\rm B3LYP}$	ligands	J _{PBE}	
	J_1	<i>μ</i> ₄ -Ο, <i>μ</i> ₃ -Ν ₃	9.9	3.0	μ₄-O, μ₃-Cl	9.8	
	J_2	μ ₄ -Ο, μ ₃ -Ν ₃	15.7	15.2	μ₄-O, μ₃-Cl	17.9	
	J_3	<i>μ₄</i> -Ο, <i>μ</i> ₃ -Ν ₃	16.8	11.3	μ₄-O, μ₃-Cl	29.7	
	J_4	<i>μ</i> ₄ -Ο, <i>μ</i> ₃ -Ν ₃	22.2	14.0	μ ₄ -Ο, μ ₃ -Cl	0.9	1
	J_5	μ ₄ -Ο, μ ₂ -OR	3.6	1.8	μ ₄ -Ο, μ ₂ -Ο	1.6]
	J_6	μ ₄ -Ο, μ ₂ -OR	7.2	5.4	μ ₄ -Ο, μ ₂ -Ο	7.6	
	J ₇	μ ₄ -Ο, μ ₂ -OR	7.2	3.4	μ ₄ -Ο, μ ₂ -Ο	4.8]
	J ₈	μ ₄ -Ο, μ ₂ -OR	5.1	1.6	μ ₄ -Ο, μ ₂ -Ο	0.6	

with those the Eliseo applying both B3LYP

Spin density plots and spin densities: Extent of spin delocalization can be understood by analyzing the computed spin density plot (see Figure 2b). All the Mn^{III} atoms found to possess a net spin density of 3.82 to 3.90 while the Mn^{III} atoms found to be in the range of 4.78 to 4.86. Upon adsorption on the surface, these values are nearly unaltered (See Table S6-S8) and this suggests that the magnetic core is still protected upon adsorption. Most notable changes on the ligand atoms include small variation in the sign as well magnitude of spin density when the Mn^{III} atoms switch its geometry from octahedral in the X-ray to square-pyramidal in end-on/side-on geometries. All the spin density plots of different broken symmetry analysis as calculated by us using CP2k program package have been shown below. The pink color shows positive spin density whereas blue ones show negative spin density.

Figure S1: Spin density of individual atoms in a model system of three different geometries of 1.

Figure S2: Showing spin density plots of various broken symmetry solution computed for complex 1 using X-ray structure.

Figure S3: Spin density plots of high-spin and various broken symmetry solution for the optimized geometry of **1** on Au(111) surface (end-on orientation).

Figure S4: Spin density plots of high-spin and various broken symmetry solutions for optimized geometry of **1** on Au(111) surface (side-on orientation).

Mn		bridging ligands	М · · · М (Å)	Mn'''	Mn'''	Mn"	Mn"		
				Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O-Mn	Mn-O-Mn
2,5	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.31612	1.92735	2.66958	1.93155	2.66559	118.486	76.86
3,6	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.31612	1.9275	2.66841	1.931	2.66493	118.506	76.891
4,7	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.317	1.92801	2.6701	1.93155	2.66559	118.504	76.875
11,15	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.31612	1.92683	2.66914	1.93184	2.66573	118.497	76.865
12,16	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.31612	1.92801	2.66958	1.9307	2.66559	118.495	76.86
13,14	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.317	1.92801	2.66937	1.93155	2.66478	118.504	76.902
2,6	J_2	μ ₄ -Ο, μ ₃ -Cl	3.22394	1.92735	2.76695	1.91068	2.66493	114.279	72.787
3,7	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.22443	1.9275	2.76782	1.91032	2.66559	114.316	72.776
4,5	J_2	μ ₄ -Ο, μ ₃ -Cl	3.22356	1.92801	2.76695	1.90977	2.66559	114.27	72.768
11,14	J_2	μ ₄ -Ο, μ ₃ -Cl	3.22307	1.92683	2.76695	1.9094	2.66478	114.314	72.767
12,15	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.22443	1.92801	2.76695	1.91068	2.66573	114.275	72.788
13,16	J_2	μ ₄ -Ο, μ ₃ -Cl	3.22443	1.92801	2.76782	1.91068	2.66559	114.275	72.776

Table S2: Selected structural parameter along with the exchange coupling constant of the X-ray structure of complex **1**. Mn atom numbers as per Figure 1b in the main manuscript.

5,6	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.19197	1.93155	2.65478	1.91068	2.65576	112.353	73.892
6,7	J ₃	μ₄-Ο, μ₃-Cl	3.19155	1.931	2.65576	1.91032	2.65437	112.371	73.888
7,5	J ₃	μ₄-Ο, μ₃-Cl	3.19115	1.90977	2.65478	1.93155	2.65437	112.349	73.893
14,15	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.22443	1.92801	2.76695	1.91068	2.66573	114.275	72.788
15,16	J ₃	μ₄-Ο, μ₃-Cl	3.19155	1.91068	2.65485	1.9307	2.65478	112.368	73.896
16,14	J ₃	μ₄-Ο, μ₃-Cl	3.19197	1.93155	2.65528	1.91068	2.65478	112.353	73.9
2,3	J_4	μ ₄ -Ο, μ ₃ -Cl	3.21233	1.8864	2.76695	1.8864	2.66841	116.739	72.431
3,4	J_4	μ ₄ -Ο, μ ₃ -Cl	3.21358	1.8864	2.76782	1.88714	2.6701	116.775	72.425
4,2	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.21239	1.8864	2.66958	1.88714	2.76695	116.705	72.415
11,12	J_4	μ ₄ -Ο, μ ₃ -Cl	3.21277	1.88653	2.66914	1.8864	2.76695	116.757	72.432
12,13	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.21277	1.8864	2.66958	1.887	2.76782	116.734	72.411
13,11	J4	μ ₄ -Ο, μ ₃ -Cl	3.21277	1.88653	2.76695	1.887	2.66937	116.727	72.428
1,2	J_5	μ ₄ -Ο, μ ₂ -Ο	3.43946	2.55189	2.30911	1.8864	1.84769	100.529	111.187

1,3	J_5	μ ₄ -Ο, μ ₂ -Ο	3.43982	2.55189	2.30845	1.8864	1.84754	100.544	111.239
1,4	J_5	μ ₄ -Ο, μ ₂ -Ο	3.43946	2.55189	2.30845	1.88714	1.84762	100.508	111.218
1,11	J_5	μ ₄ -Ο, μ ₂ -Ο	3.44032	2.55189	2.30882	1.88653	1.84877	100.561	111.2
1,12	J ₅	μ ₄ -Ο, μ ₂ -Ο	3.43946	2.55189	2.30874	1.8864	1.84704	100.529	111.228
1,13	J_5	μ ₄ -Ο, μ ₂ -Ο	3.43896	2.55189	2.30845	1.887	1.84704	100.491	111.215
5,10	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30559	1.93155	1.90295	2.25516	2.33369	104.019	102.086
6,8	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30558	1.931	1.90202	2.25584	2.33405	104.011	102.101
7,9	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30601	1.93155	1.90295	2.25478	2.33478	104.051	102.065
14,18	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30681	1.93155	1.90295	2.25584	2.33497	104.048	102.093
15,19	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30518	1.93184	1.90202	2.25516	2.33369	103.99	102.097
16,17	J_6	μ ₄ -Ο, μ ₂ -Ο	3.30519	1.9307	1.90295	2.25478	2.33387	104.043	102.062
2,10	J 7	μ ₄ -Ο, μ ₂ -Ο	3.28353	1.92735	1.90482	2.25516	2.31654	103.174	101.682
3,8	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.28309	1.9275	1.90507	2.25584	2.31588	103.125	101.679
4,9	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.28264	1.92801	1.90418	2.25478	2.31527	103.126	101.709

11,19	J_7	μ ₄ -Ο, μ ₂ -Ο	3.28264	1.92683	1.90482	2.25516	2.31588	103.151	101.667
12,17	J_7	μ ₄ -Ο, μ ₂ -Ο	3.28264	1.92801	1.90482	2.25478	2.31588	103.126	101.667
13,18	J_7	μ ₄ -Ο, μ ₂ -Ο	3.28398	1.92801	1.90443	2.25584	2.31593	103.147	101.735
6,10	J_8	μ ₄ -Ο, μ ₂ -Ο	3.24308	1.91068	1.8716	2.25516	2.21698	101.928	104.656
5,9	J_8	μ ₄ -Ο, μ ₂ -Ο	3.2423	1.90977	1.8716	2.25478	2.21585	101.937	104.663
7.0		0 0	0.0400	1.01000	4.0740	0.0550.4	0.04505	404.004	404.000
7,8	J_8	μ_4 -O, μ_2 -O	3.2423	1.91032	1.8716	2.25584	2.21585	101.881	104.663
11 10	,		2 24407	1 0004	1 9716	0.05546	0.01564	101 016	104 652
14,19	J 8	μ_4 -0, μ_2 -0	3.24107	1.9094	1.07 10	2.25510	2.21004	101.910	104.052
15 17	1.	<i>u</i> , 0, <i>u</i> , 0	3 2427	1 01068	1 9716	2 25479	2 21660	101 025	104 65
13,17	J 8	μ_4 -O, μ_2 -O	5.2427	1.91000	1.0710	2.25470	2.21009	101.925	104.05
16 12	1.		3 2/311	1 01069	1 8716	2 25584	2 21635	101 005	104 682
10,10	U 8	μ_4 -0, μ_2 -0	5.24511	1.91000	1.07 10	2.2004	2.21000	101.900	104.002

Table S3: Selected structural parameter along with the exchange coupling constant of the end-on geometry of **1** on Au(111) surface. Mn atom numbers as per Figure 1b in the main manuscript.

М		bridging ligands	M · · · M (Å)	Mn ^{III}	Mn ^{III}	Mn"	Mn"		
				Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O-Mn	Mn-O-Mn
2,5	J 1	μ ₄ -Ο, μ ₃ -Cl	3.14733	1.91491	2.55721	1.90573	2.54954	110.928	76.094
3,6	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.179	1.89837	2.62236	1.90513	2.53422	113.4	76.1
4,7	J_1	μ ₄ -Ο, μ ₃ -Cl	3.15031	1.91217	2.54549	1.9047	2.55178	111.25	76.346
			0 47500	4 00007	0 50440	4 00004	0 500 / 7	4.4.0.000	70.000
11,15	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.17562	1.92067	2.58116	1.90381	2.52947	112.266	76.826
10 16	1	11 O 11 Cl	2 1121	1 00294	2 52540	1 00560	2 54202	110 464	75 569
12,10	J 1	μ_4 -O, μ_3 -O	5.1121	1.90204	2.00049	1.00502	2.04090	110.404	75.500
13.14	J1	μ_{4} -O, μ_{3} -Cl	3,15966	1.90689	2.52404	1,89592	2.62137	112.377	75.743
,	- /	µ4 0,µ3 0.							
2,6	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.2568	1.91491	3.02461	1.9072	2.53422	116.88	71.107
3,7	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.21128	1.89837	2.91692	1.89553	2.55178	115.652	71.565
4,5	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.26129	1.91217	2.94276	1.90733	2.54954	117.267	72.453
			0.00400	4 00007	0.04070	4 007 47	0.00407	447 505	70.000
11,14	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.26462	1.92067	2.91279	1.89747	2.62137	117.525	72.082
12 15	10		3 26232	1 00284	3 02375	1 88724	2 52947	118 802	71 323
12,10	02	μ_4 -0, μ_3 -01	5.20252	1.30204	5.02575	1.00724	2.52547	110.002	11.020
13.16	J_2	μ ₄ -Ο, μ ₃ -Cl	3.27424	1.90689	3.06507	1.89436	2.54393	118.939	70.734
·		, -							

5,6	J 3	μ ₄ -Ο, μ ₃ -Cl	3.20913	1.90573	2.64992	1.9072	2.64769	114.628	74.568
6,7	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.24417	1.90513	2.64769	1.89553	2.65306	117.207	75.472
7,5	J ₃	μ₄-Ο, μ₃-Cl	3.21344	1.90733	2.64992	1.9047	2.65306	114.911	74.597
14,15	J ₃	μ₄-Ο, μ₃-Cl	3.19521	1.89747	2.59893	1.90381	2.67941	114.399	74.49
15,16	J ₃	μ₄-Ο, μ ₃ -Cl	3.1861	1.88724	2.67941	1.88562	2.63908	115.232	73.601
16,14	J ₃	μ₄-Ο, μ₃-Cl	3.16562	1.89592	2.59893	1.89436	2.63908	113.272	74.361
2,3	J_4	μ ₄ -Ο, μ ₃ -Cl	3.22894	1.89354	3.02461	1.88215	2.62236	117.562	69.332
3,4	J4	μ ₄ -Ο, μ ₃ -Cl	3.17814	1.89409	2.54549	1.88215	2.91692	114.622	70.785
4,2	J_4	μ₄-O, μ₃-Cl	3.24782	1.89354	2.55721	1.89409	2.94276	118.07	72
11,12	J4	μ₄-Ο, μ₃-Cl	3.23989	1.89852	2.58116	1.89365	3.02375	117.379	70.118
12,13	J_4	μ₄-Ο, μ₃-Cl	3.24339	1.89365	2.53549	1.89473	3.06507	117.772	70.048
13,11	J_4	μ₄-Ο, μ₃-Cl	3.1809	1.89852	2.91279	1.89473	2.52404	113.979	71.207
1,2	J 5	μ ₄ -Ο, μ ₂ -Ο	3.30136	2.3738	2.22363	1.89354	1.8312	100.761	108.627
1,3	J 5	μ₄-O, μ₂-O	3.28871	2.3738	2.26192	1.88215	2.26192	100.564	107.065

1,4	J_5	μ ₄ -Ο, μ ₂ -Ο	3.28809	2.3738	2.2089	1.89409	1.83316	100.178	108.516
1,11	J 5	μ ₄ -Ο, μ ₂ -Ο	3.29991	2.33636	2.25389	1.89852	1.82476	101.881	107.545
1,12	J_5	μ ₄ -Ο, μ ₂ -Ο	3.27984	2.33636	2.24715	1.89365	1.82528	101.162	106.837
1,13	J 5	μ ₄ -Ο, μ ₂ -Ο	3.26021	2.33636	2.22543	1.89473	1.82284	100.283	106.865
5,10	J 6	μ ₄ -Ο, μ ₂ -Ο	3.24212	1.90573	1.91517	2.23853	2.23451	102.65	102.486
6,8	J_6	μ ₄ -Ο, μ ₂ -Ο	3.27361	1.90513	1.9031	2.21956	2.32987	104.802	100.832
7,9	J 6	μ ₄ -Ο, μ ₂ -Ο	3.24423	1.9047	1.91089	2.22117	2.2631	103.419	101.687
14,18	J_6	μ ₄ -Ο, μ ₂ -Ο	3.24492	1.89592	1.91212	2.25055	2.20385	102.658	103.842
15,19	J 6	μ ₄ -Ο, μ ₂ -Ο	3.21485	1.90381	1.9076	2.21637	2.21098	102.304	102.376
16,17	J_6	μ ₄ -Ο, μ ₂ -Ο	3.249	1.88562	1.92793	2.26616	2.20319	102.605	103.513
2,10	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.44285	2.23853	2.66175	1.91491	1.8806	111.739	97.067
3,8	J 7	μ ₄ -Ο, μ ₂ -Ο	3.20041	1.89837	1.88514	2.21956	2.20867	101.724	102.559
4,9	J 7	μ ₄ -Ο, μ ₂ -Ο	3.36798	1.91217	1.88137	2.22117	2.56822	108.913	97.181
11,19	J 7	μ ₄ -Ο, μ ₂ -Ο	3.36572	1.92067	1.92067	2.21637	2.54124	108.68	97.86

12,17	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.3732	1.90284	1.89129	2.26616	2.48978	107.701	99.797
13,18	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.37196	1.90689	1.89645	2.25055	2.5165	108.117	98.682
6,10	J 8	μ ₄ -Ο, μ ₂ -Ο	3.14443	1.9072	1.89237	2.23853	2.06997	98.343	104.954
5,9	J 8	μ ₄ -Ο, μ ₂ -Ο	3.15035	1.90733	1.89514	2.22117	2.0542	99.19	105.75
7,8	J 8	μ ₄ -Ο, μ ₂ -Ο	3.18418	1.89553	1.8896	2.21956	2.12831	101.097	104.683
14,19	J 8	μ ₄ -Ο, μ ₂ -Ο	3.14494	1.89747	1.8807	2.21637	2.1013	99.429	104.195
15,17	J 8	μ ₄ -Ο, μ ₂ -Ο	3.18574	1.88724	1.88287	2.26616	2.0855	99.772	106.682
16,18	J 8	μ ₄ -Ο, μ ₂ -Ο	3.16116	1.89436	1.88312	2.25055	2.06634	99.038	106.245

Table S4: Selected structural parameter along with the exchange coupling constant of the side-on geometry of **1** on Au(111) surface. Mn atom numbers as per Figure 1b in the main manuscript.

Mn		bridging ligands	M · · · M (Å)	Mn ^{III}	Mn ^{III}	Mn"	Mn"		
				Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O-Mn	Mn-O-Mn
2,5	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.20276	1.91238	2.60212	1.90713	2.63383	113.969	75.42
3,6	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.28356	1.92099	2.63097	1.93805	2.61112	116.613	77.567
4,7	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.2403	1.9309	2.61903	1.91789	2.60808	114.683	76.618
11,15	J ₁	μ₄-Ο, μ₃-Cl	3.23079	1.91801	2.6078	1.91274	2.64356	114.998	75.934
12,16	J ₁	μ₄-Ο, μ₃-Cl	3.21793	1.9172	2.61316	1.90983	2.60788	114.458	76.098
13,14	J ₁	μ₄-Ο, μ₃-Cl	3.24247	1.91501	2.59568	1.9194	2.64705	115.477	76.402
2,6	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.25845	1.91238	2.77367	1.90339	2.63097	117.286	74.103
3,7	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.24017	1.93805	2.83225	1.91404	2.60808	114.521	72.977
4,5	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.29832	1.9309	2.79245	1.91319	2.63383	118.19	74.803
11,14	J_2	μ ₄ -Ο, μ ₃ -Cl	3.27485	1.91801	2.845	1.91366	2.64705	117.449	73.109
12,15	J_2	μ ₄ -Ο, μ ₃ -Cl	3.27532	1.9161	2.64356	1.9172	2.81093	117.396	73.737
13,16	J_2	μ ₄ -Ο, μ ₃ -Cl	3.24344	1.91501	2.83282	1.90587	2.60788	116.178	73.056

5,6	J 3	μ ₄ -Ο, μ ₃ -Cl	3.19547	1.90713	2.61858	1.90339	2.61183	113.983	75.315
6,7	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.19803	1.92099	2.61183	1.91404	2.6191	113.002	75.377
7,5	J 3	μ₄-O, μ₃-Cl	3.16284	1.91319	2.61858	1.91789	2.6191	111.294	74.294
14,15	J ₃	μ₄-Ο, μ₃-Cl	3.15963	1.91366	2.59558	1.91274	2.61015	111.328	74.738
15,16	J ₃	μ₄-Ο, μ₃-Cl	3.18538	1.9161	2.61015	1.90983	2.61714	112.729	75.088
16,14	J ₃	μ₄-Ο, μ₃-Cl	3.17441	1.9194	2.59558	1.90587	2.61714	112.166	75.029
2,3	J_4	μ₄-Ο, μ₃-Cl	3.15781	1.84813	2.77367	1.84745	2.61112	117.405	71.736
3,4	J4	μ₄-Ο, μ ₃ -Cl	3.19912	1.84745	2.83225	1.85301	2.61903	119.656	71.747
4,2	J_4	μ₄-Ο, μ₃-Cl	3.13706	1.84813	2.60212	1.85301	2.79245	115.901	71.015
11,12	J_4	μ₄-Ο, μ₃-Cl	3.2016	1.87301	2.6078	1.86512	2.81093	117.845	72.323
12,13	J_4	μ₄-Ο, μ₃-Cl	3.18167	1.86512	2.61316	1.86519	2.83282	117.062	71.367
13,11	J_4	μ₄-Ο, μ₃-Cl	3.19412	1.87301	2.845	1.86519	2.59568	117.399	71.734
1,2	J_5	μ ₄ -Ο, μ ₂ -Ο	3.41394	2.60463	2.15481	1.84813	1.85846	98.694	116.374
1,3	J 5	μ ₄ -Ο, μ ₂ -Ο	3.42062	2.60463	2.2412	1.84745	1.84153	98.988	113.462

1,4	J 5	μ ₄ -Ο, μ ₂ -Ο	3.42431	2.60463	2.2121	1.85301	1.84857	98.989	114.683
1,11	J_5	μ ₄ -Ο, μ ₂ -Ο	3.42803	2.55377	2.24576	1.87301	1.85035	100.367	113.276
1,12	J 5	μ₄-O, μ₂-O	3.38762	2.55377	2.2215	1.86512	1.84268	98.911	112.594
1,13	J 5	μ ₄ -Ο, μ ₂ -Ο	3.38108	2.55377	2.16965	1.86519	1.85491	98.64	114.076
5,10	J ₆	μ ₄ -Ο, μ ₂ -Ο	3.26384	1.90713	1.8918	2.21888	2.26109	104.311	103.253
6,8	J ₆	μ ₄ -Ο, μ ₂ -Ο	3.2256	1.92099	1.90214	2.13986	2.37963	105.054	97.131
7,9	J ₆	μ ₄ -Ο, μ ₂ -Ο	3.27035	1.91789	1.8944	2.17476	2.28253	105.914	102.668
14,18	J_6	μ ₄ -Ο, μ ₂ -Ο	3.2584	1.9194	1.89378	2.19385	2.27	104.581	102.616
15,19	J_6	μ ₄ -Ο, μ ₂ -Ο	3.2735	1.91274	1.88524	2.21559	2.29602	104.683	102.61
16,17	J 6	μ ₄ -Ο, μ ₂ -Ο	3.2316	1.90983	1.89374	2.18678	2.26796	103.951	101.505
2,10	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.27927	1.91238	1.90348	2.21888	2.30001	104.835	102.133
3,8	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.1949	1.93805	1.88599	2.13986	2.24067	103.046	101.118
4,9	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.24949	1.9309	1.89914	2.17476	2.38466	104.489	98.034
11 10		11. O 11. O	3 28306	1 01801	1 00674	2 21550	2 3663	104 029	00.849
11,19	J 7	μ4-0, μ2-0	3.20300	1.91001	1.90074	2.21009	2.3003	104.930	39.040

12,17	J 7	μ ₄ -Ο, μ ₂ -Ο	3.25284	1.9172	1.90494	2.18678	2.34231	104.668	99.454
12 19		11. O 11. O	3 28025	1 01501	1 00512	2 10285	2 20482	105 743	08 706
13,10	J 7	μ_4 -O, μ_2 -O	3.20025	1.91501	1.90512	2.19303	2.39402	105.745	90.790
6,10	J ₈	μ ₄ -Ο, μ ₂ -Ο	3.16238	1.90339	1.88503	2.21888	2.11266	99.914	104.424
5,9	J ₈	μ ₄ -Ο, μ ₂ -Ο	3.13788	1.91319	1.88653	2.17476	2.12928	100.08	102.607
7.8	يام	$\mu_1 - \Omega_1 \mu_2 - \Omega_2$	3,16269	1,91404	1.89424	2,13986	2,1772	102,408	101,712
.,•		F4 0, F2 0							
14,19	J ₈	μ ₄ -Ο, μ ₂ -Ο	3.19949	1.91366	1.88902	2.21559	2.15048	101.329	104.57
15,17	J ₈	μ ₄ -Ο, μ ₂ -Ο	3.17718	1.9161	1.89086	2.18678	2.13694	101.293	103.982
16 19	1.		3 15701	1 00597	1 90252	2 10295	2 11/02	100 522	102.86
10,10	J 8	μ4-0, μ2-0	5.15791	1.90007	1.09000	2.19303	2.11403	100.322	103.00

Table S5: Selected structural parameter along with the exchange coupling constant of the reduced geometry of **1** on Au(111) surface. Mn atom numbers as per Figure 1b in the main manuscript.

Mn		bridging ligands	М · · · М (Å)	Mn ^{III}	Mn ^{III}	Mn"	Mn"		
				Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O/Mn	Mn-O-Mn	Mn-O-Mn
2,5	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.33299	1.99345	2.50476	2.00548	3.05535	112.913	72.901
3,6	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.23098	2.04809	2.55796	1.91121	2.66018	109.333	76.485
4,7	J ₁	μ ₄ -Ο, μ ₃ -Cl	3.29033	2.00063	2.49093	2.11505	2.7959	106.124	76.737
11,15	J_1	μ ₄ -Ο, μ ₃ -Cl	3.22887	2.08722	2.55786	2.02467	2.5223	103.477	78.923
12,16	J_1	μ ₄ -Ο, μ ₃ -Cl	3.22061	2.02721	2.44135	1.97004	3.07368	107.348	70.396
			0.40440	0.04044	0 50 40	4 0 0 0 0 0	0 20200	101.051	-
13,14	J_1	μ_4 -O, μ_3 -Cl	3.19146	2.04314	2.5349	1.98328	2.72529	104.854	74.607
2.6	12	μ_4 -O, μ_2 -Cl	3.31077	1,99345	2.87149	1.87206	2,66018	117,815	73 415
_, -	-2	1-4 - , 1-3							
3,7	J_2	μ ₄ -Ο, μ ₃ -Cl	3.40901	2.04809	2.67609	2.0158	2.7959	114.036	77.036
4,5	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.54005	2.00063	3.11558	1.974	3.05535	125.912	70.005
11,14	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.31246	2.08722	2.63083	1.92842	2.72529	111.093	76.383
12,15	J ₂	μ ₄ -Ο, μ ₃ -Cl	3.27884	2.02721	2.93563	1.9972	2.5223	109.12	73.407
		_							
13,16	J_2	μ ₄ -Ο, μ ₃ -Cl	3.55229	2.04314	2.76361	1.94108	3.07368	126.128	74.758

5,6	J 3	μ ₄ -Ο, μ ₃ -Cl	3.23527	2.00548	2.50543	1.87206	3.03991	113.054	70.634
6,7	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.3353	1.91121	3.03991	2.0158	2.50143	116.251	73.285
7,5	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.05576	1.974	2.50543	2.50543	2.50143	96.654	75.224
14,15	J ₃	μ ₄ -Ο, μ ₃ -Cl	3.18746	1.92842	2.98544	2.02467	2.68384	107.451	68.181
15,16	J ₃	μ₄-Ο, μ₃-Cl	3.23503	1.9972	2.68384	1.97004	2.67361	109.259	74.29
16,14	J ₃	μ₄-O, μ₃-Cl	3.26585	1.98328	2.98544	1.94108	2.67361	112.646	70.247
2,3	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.23549	2.09593	2.87149	2.07585	2.07585	101.712	72.897
3,4	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.18288	2.07585	2.67609	2.05253	2.49093	100.882	75.955
42	1.		3 40505	2 09593	2 50476	2 05253	3 11558	110 326	73 678
7,2	04	μ4-0, μ3-01	0.40000	2.03333	2.30470	2.00200	0.11000	110.520	10.010
11,12	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.39712	2.09083	2.55786	2.02177	2.93563	111.375	76.051
12,13	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.17269	2.02177	2.44135	2.08973	2.76361	100.994	74.827
13,11	J ₄	μ ₄ -Ο, μ ₃ -Cl	3.31213	2.09083	2.63083	2.08973	2.5349	104.796	79.735
1,2	J 5	μ ₄ -Ο, μ ₂ -Ο	3.19921	1.92893	2.10447	2.09593	2.45852	105.209	88.681
1.3	.15	114-0 112-0	3 50518	1 92893	2 98944	2 07585	2 29415	122 106	81.98
1,0	05	$\mu_4 \circ, \mu_{2} \circ$	0.00010	1.02000	2.00044	2.01000	2.20710	122.100	01.00

1,4	J_5	μ ₄ -Ο, μ ₂ -Ο	3.37034	1.92893	2.74071	2.05253	2.4716	115.633	80.393
1,11	J 5	μ ₄ -Ο, μ ₂ -Ο	3.42664	1.9253	2.92898	2.09083	2.41181	117.068	79.173
1,12	J_5	μ ₄ -Ο, μ ₂ -Ο	3.13253	1.9253	2.28831	2.02177	3.23155	105.027	66.63
1,13	J 5	μ ₄ -Ο, μ ₂ -Ο	3.41526	1.9253	2.9128	2.08973	2.44592	116.499	78.655
5,10	J_6	μ ₄ -Ο, μ ₂ -Ο	3.26125	2.00548	2.02864	2.22246	2.12846	100.827	103.323
6,8	J_6	μ ₄ -Ο, μ ₂ -Ο	3.16554	1.91121	1.92777	2.08206	2.31464	104.8	96.09
79	Je	UA-0 UA-0	3 17831	2 11505	2 04881	2 01896	2 10589	100 47	99 803
7,0	00	μ4 Ο, μ2 Ο	0.17001	2.11000	2.01001	2.01000	2.10000	100.11	00.000
14,18	J ₆	μ ₄ -Ο, μ ₂ -Ο	3.17273	1.98328	2.0055	2.14291	2.26734	100.443	95.701
15,19	J 6	μ ₄ -Ο, μ ₂ -Ο	3.05598	2.02467	2.01624	2.01511	2.19275	98.308	93.019
16,17	J_6	μ ₄ -Ο, μ ₂ -Ο	3.12008	1.97004	1.97889	2.07014	2.14014	101.086	98.409
2,10	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.46127	1.99345	3.73582	2.22246	2.15597	110.253	65.719
3,8	J 7	μ ₄ -Ο, μ ₂ -Ο	3.17436	2.04809	2.06611	2.08206	2.1103	100.45	98.935
		-							
4,9	J 7	μ ₄ -Ο, μ ₂ -Ο	3.31214	2.00063	2.01839	2.01896	2.7273	110.973	87.179
11,19	J 7	μ ₄ -Ο, μ ₂ -Ο	3.52077	2.08722	2.02163	2.01511	2.8832	118.228	89.98

12,17	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.46105	2.02721	1.95586	2.07014	2.97882	115.277	86.458
13,18	J ₇	μ ₄ -Ο, μ ₂ -Ο	3.48325	2.04314	1.99628	2.14291	2.91545	112.61	88.267
6,10	J 8	μ ₄ -Ο, μ ₂ -Ο	3.13641	1.87206	1.92777	2.08206	2.31464	104.8	96.09
5,9	J 8	μ ₄ -Ο, μ ₂ -Ο	3.31164	1.974	2.26545	2.01896	2.57674	112.063	86.047
7,8	J 8	μ ₄ -Ο, μ ₂ -Ο	3.36554	2.0158	2.29656	2.08206	2.86856	110.418	80.494
14,19	J 8	μ ₄ -Ο, μ ₂ -Ο	3.34372	1.92842	2.83049	2.01511	2.32754	115.951	80.174
15,17	J 8	μ ₄ -Ο, μ ₂ -Ο	3.41412	1.9972	2.91283	2.07014	2.19388	114.141	82.621
16,18	J 8	μ ₄ -Ο, μ ₂ -Ο	3.06908	1.94108	1.93837	2.14291	2.05222	97.316	100.504

Mn (ion)	HS	BS1	BS2	BS3	BS4	BS5	BS6	BS7	BS8
A-iay									
Mn1	4.78	4.76	4.77	4.72	4.78	-4.77	4.86	4.77	-4.74
Mn2	3.85	3.83	3.82	-3.76	3.83	-3.82	3.83	-3.72	3.76
Mn3	3.82	3.79	3.79	-3.73	3.80	-3.77	3.82	3.79	-3.75
Mn4	3.84	-3.73	-3.71	-3.75	3.82	-3.80	-3.74	3.79	3.76
Mn5	3.90	-3.77	3.84	3.86	-3.78	3.86	3.84	3.82	-3.75
Mn6	3.89	3.88	3.85	3.86	-3.79	3.86	3.86	3.86	3.83
Mn7	3.88	3.86	3.87	3.85	-3.78	3.85	3.85	-3.77	3.80
Mn8	4.82	4.81	4.82	4.81	4.80	4.81	4.85	4.82	-4.80
Mn9	4.83	4.81	4.82	4.82	4.81	4.82	4.84	-4.81	4.82
Mn10	4.82	4.81	-4.80	4.81	4.81	4.81	4.85	4.81	4.81
Mn11	3.85	3.81	3.82	-3.76	3.83	-3.81	3.83	-3.73	3.77
Mn12	3.84	3.82	3.83	-3.75	3.82	-3.80	3.83	3.80	-3.79
Mn13	3.85	-3.72	3.84	-3.76	3.83	-3.81	-3.74	3.82	3.87
Mn14	3.89	-3.76	-3.78	3.85	-3.77	3.85	3.85	3.81	3.87
Mn15	3.89	3.88	3.85	3.85	-3.77	3.85	3.86	3.82	-3.81
Mn16	3.89	3.86	3.87	3.85	-3.77	3.85	3.84	-3.75	3.83
Mn17	4.82	4.81	4.81	4.81	4.80	4.81	4.85	4.81	-4.81
Mn18	4.82	4.81	4.81	4.81	480	4.81	4.84	4.82	4.81
Mn19	4.82	4.82	-4.81	4.82	481	4.82	4.85	-4.81	4.82

Table S6: Computed spin densities of various spin states of the 1 (X-ray structure).

Mn (ion)	HS	BS1	BS2	BS3	BS4	BS5	BS6	BS7	BS8
ena-on									
Mn1	4.80	4.79	4.79	4.75	4.79	-4.79	4.79	4.79	-4.77
Mn2	3.85	3.83	3.81	-3.76	3.83	-3.81	3.83	-3.72	3.77
Mn3	3.82	3.79	3.79	-3.73	3.79	-3.77	3.79	3.78	-3.75
Mn4	3.84	-3.73	-3.71	-3.75	3.82	-3.80	-3.71	3.79	3.76
Mn5	3.89	-3.76	3.83	3.85	-3.77	3.85	3.87	3.82	-3.74
Mn6	3.88	3.86	3.85	3.85	-3.78	3.85	3.88	3.85	3.82
Mn7	3.88	3.85	3.86	3.84	-3.77	3.84	3.87	-3.77	3.80
Mn8	4.82	4.82	4.82	4.82	4.81	4.82	4.82	4.82	-4.81
Mn9	4.83	4.81	4.82	4.82	4.81	4.82	4.82	-4.81	4.82
Mn10	4.83	4.83	-4.80	4.82	4.81	4.82	4.83	4.82	4.82
Mn11	3.85	3.81	3.82	-3.76	3.83	-3.81	3.82	-3.74	3.78
Mn12	3.83	3.81	3.83	-3.75	3.81	-3.79	3.81	3.80	-3.78
Mn13	3.84	-3.72	3.83	-3.75	3.82	-3.80	-3.71	3.81	3.77
Mn14	3.87	-3.75	-3.76	3.83	-3.76	3.83	3.86	3.80	3.85
Mn15	3.87	3.85	3.83	3.83	-3.76	3.83	3.87	3.80	-3.79
Mn16	3.87	3.83	3.85	3.83	-3.76	3.83	3.85	-3.72	3.81
Mn17	4.84	4.83	4.83	4.82	4.82	4.83	4.84	4.83	-4.83
Mn18	4.83	4.82	4.82	4.82	4.81	4.82	4.82	4.82	4.82
Mn19	4.83	4.82	-4.81	4.83	4.81	4.83	4.83	-4.81	4.83

Table S7: Computed spin densities of various spin states of the 1 on Au(111) surface, end-on orientation.

Mn (ion) side-on	HS	BS1	BS2	BS3	BS4	BS5	BS6	BS7	BS8
Mn1	4.77	4.74	4.76	4.70	4.76	-4.76	4.73	4.74	-4.73
Mn2	3.86	3.83	3.81	-3.76	3.83	-3.81	3.83	-3.71	3.77
Mn3	3.84	3.81	3.81	-3.75	3.82	-3.79	3.81	3.81	-3.77
Mn4	3.85	-3.73	-3.72	-3.76	3.83	-3.81	-3.72	3.80	3.77
Mn5	3.88	-3.76	3.82	3.85	-3.77	3.84	3.86	3.82	-3.75
Mn6	3.89	3.86	3.84	3.85	-3.78	3.85	3.89	3.85	3.82
Mn7	3.88	3.86	3.87	3.85	-3.77	3.85	3.87	-3.79	3.82
Mn8	4.83	4.83	4.83	4.83	4.82	4.83	4.83	4.82	-4.82
Mn9	4.83	4.82	4.83	4.83	4.81	4.83	4.83	-4.81	4.82
Mn10	4.82	4.82	-4.80	4.81	4.81	4.81	4.82	4.81	4.81
Mn11	3.86	3.82	3.83	-3.77	3.84	-3.82	3.84	-3.75	3.79
Mn12	3.85	3.83	3.85	-3.76	3.83	-3.81	3.83	3.82	-3.80
Mn13	3.86	-3.73	3.85	-3.76	3.84	-3.81	-3.72	3.83	3.79
Mn14	3.89	-3.76	-3.79	3.85	-3.77	3.85	3.87	3.82	3.86
Mn15	3.88	3.87	3.84	3.85	-3.77	3.85	3.88	3.81	-3.81
Mn16	3.88	3.84	3.86	3.84	-3.77	3.84	3.86	-3.75	3.82
Mn17	4.83	4.83	4.83	4.83	4.82	4.83	4.83	4.83	-4.82
Mn18	4.83	4.82	4.83	4.82	4.81	4.82	4.83	4.82	4.83
Mn19	4.84	4.83	-4.82	4.83	4.82	4.83	4.84	-4.82	4.83

Table S8: Computed spin densities of various spin states of the 1 on Au(111) surface, side-on orientation.

Bond Length and Bond Angle Parameters Selected bond angles and bond lengths of **1** of the optimized structure (bare) as well as with Au(111) surface are given in the following table. Also all the parameters have been shown against the X-ray structure parameters⁶. The Au-S bond lengths have been found to be in the range of 2.72 - 3.87 Å.

A	Experimental(Å)	Optimized	End-on	Side-on	Mn19_red
O ^a –Mn ^{II}	2.31	2.25	2.21	2.21	2.13
Mn ^{II} –O ^a –Mn ^{III}	101.7	101.5	97.2	97.2	96.1
O ^a –Mn ^{III}	1.9	1.88	1.88	1.88	2.02
O ^b –Mn ^{III}	1.85	1.82	1.83	1.83	2.02
Mn ^{III} –O ^b –Mn ^{II}	111.2	109.7	108.5	108.5	88.7
O ^b –Mn ^{II}	2.30	2.22	2.21	2.21	2.10
O ^c –Mn ^{II}	2.21	2.23	2.24	2.24	2.29
В					
O ^a –Mn ^{II}	2.33	2.24	2.21	2.26	2.21
Mn ^{II} –O ^a –Mn ^{III}	102.1	100.7	102.4	101.7	99.8
O ^a –Mn ^{III}	1.90	1.91	1.91	1.91	2.05
O ^b –Mn ^{III}	1.87	1.88	1.88	1.89	1.89
Mn ^{III} –O ^b –Mn ^{II}	104.7	103.7	106.7	104.7	104.7
O ^b –Mn ^{II}	2.21	2.10	2.08	2.12	2.06
Oc–Mn [∥]	2.21	2.18	2.22	2.2	2.17

 Table S9: Bond length and bond angle parameters of 1.

Table S10: Table showing Au-S bond lengths in Å of 1 on Au(111) after optimization using PBE functional.

Au-S	Bond length (Å)	Au-S	Bond length (Å)
End-on		Side-on	
Au2-S575	3.12	Au34-S657	2.73
Au6-S575	3.10	Au207-S657	3.73
Au253-S575	3.12	Au35-S657	3.71
Au4-S521	3.43	Au282-S547	2.73
Au7-S521	2.91	Au281-S547	3.06
Au78-S521	2.86	Au284-S547	3.14
Au11-S629	3.08	Au71-S770	2.72
Au12-S629	3.17	Au25-S770	3.76
Au182-S629	2.84	Au99-S770	3.87

Adsorption energies:

The Adsorption of 1 on gold surface has been modeled by a three layer of Au(111) with 324 and 432 gold atoms. Table S8 lists the activation energy of S–CH₃ cleavage and reaction energy of the adsorption of 1 on gold surface obtained using theoretical approach as mentioned previously. The adsorption energies, ΔE and $\Delta E'$ were computed using the following equations unless otherwise mentioned,

$$\Delta E = [E\{Mn_{19}SMe(Au111)\} - E\{Au(111) + Mn_{19}SMe\}]$$

$$\Delta E' = [E\{Mn_{19}S^{\bullet}(Au111) + 3CH_{3}^{\bullet}\} - E\{Au(111) + Mn_{19}SMe\}]$$

Equation I and II give the energy changes of adsorption of $Mn_{19}SMe$ on Au(111) surface. Where E{ $Mn_{19}SMe$ (Au111)} is the total energy of $Mn_{19}SMe$ when adsorbed on Au(111) surface, E{Au(111) + $Mn_{19}SMe$ } is the sum of the energies of Au(111) surface and $Mn_{19}SMe$ optimized structure respectively and E { $Mn_{19}S^{\bullet}$ } is the energy of radical state of Mn19.

Figure S5: Ground state of 1 on a) pristine X-ray structure. b) for end-on orientation and c) side-on orientations of 1 on Au(111)

Figure S6: a) Reduced structure of 1 on Au(111) b) Ground state of 1 after reduction.

Figure S7. Various small model system constructed based on the exchange topology depicted and three set of computed exchange coupling constants to arrive at the possible ground state spin configuration of **1**.

References:

- 1. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, *Comput. Phys. Commun.*, 2005, **167**, 103-128.
- 2. J. Paier, R. Hirschl, M. Marsman and G. Kresse, J. Chem. Phys., 2005, **122**, 234102.
- 3. G. Lippert, J. Hutter and M. Parrinello, *Theor. Chem. Acc.*, 1999, **103**, 124-140.
- 4. B. G. Lippert, J. H. Parrinello and Michele, *Mol. Phys.*, 1997, **92**, 477-488.
- 5. E. Ruiz, T. Cauchy, J. Cano, R. Costa, J. Tercero and S. Alvarez, *J. Am. Chem. Soc.*, 2008, **130**, 7420-7426.