Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information

A New Ferroelastic Hybrid Material with a Large Spontaneous Strain: (Me₃NOH)₂[ZnCl₄]

Wei Yuan,^a Ying Zeng,^a Ya-Yin Tan,^b Jian-Hua Zhou,^b Wei-Jian Xu,^{a,c,*} Wei-Xiong Zhang^{a,*} and Xiao-Ming Chen^a

^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.

^b Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

^c Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.

Experimental

Synthesis

Trimethylamine N-oxide hydrochloride was obtained by reaction of trimethylamine N-oxide dehydrate with 36.5% aqueous HCl. All the other chemicals were commercially available and were used without further purification.

Compound 1 was synthesized by mixing aqueous solutions of ZnCl₂, HCl (36.5%), and trimethylamine N-oxide hydrochloride in the ratio of 1:2:1. Block colourless single crystals were obtained by slow evaporation of solvent at room temperature after a few days. The bulk phase purity was confirmed by powder X-ray diffraction (Fig. S1). Elemental analysis, calcd (%) for 1 (C₆H₂₀Cl₄N₂O₂Zn, 359.46): C, 20.05; N, 7.79; H, 5.61. Found, C, 20.26; N, 7.73; H, 6.17."

Single-crystal X-ray crystallography

The *in-situ* variable-temperature single-crystal X-ray diffraction intensities were collected on a RigakuXtaLAB P300DS single-crystal diffractometer with graphite monochromated Cu-K α radiation (λ = 1.54178 Å). The CrystalClear software package (Rigaku) was used for data collection, cell refinement, and data reduction. Absorption corrections were applied by using multi-scan program REQAB (Jacobson, 1998). The structures were solved by direct methods and refined using full-matrix least-squares methods with the SHELX program package and Olex2 program. Non-hydrogen atoms were refined anisotropically and the positions of the hydrogen atoms were generated geometrically. The crystal data and structure refinement results at different temperatures for 1 are listed in Table S1. Selected bond distances and bond angles are listed in Table S2 and S3.

Thermogravimetric analyses

Thermogravimetric analyses (TGA) were carried out on a TA Q50 system with a heating rate of 5 K min⁻¹ under a nitrogen atmosphere.

DSC measurements

Differential scanning calorimetry (DSC) was carried out on a TA DSC Q2000 instrument under a nitrogen atmosphere in aluminum crucibles with heating and cooling rates of 10 K/min from 293 K to 393 K.

Dielectric measurements

The dielectric measurements were carried on a TH2828A impedance analyzer for **1** from 500 Hz to 1 MHz, with an amplitude of 1.0 V, and a temperature sweeping rate of approximately 5 K/min for **1** in a Mercury iTC cryogenic environment controller of Oxford Instrument. The pressed-powder pellets were deposited with silver conducting glue used as electrodes.

Variable-temperature powder X-ray diffraction (PXRD)

Variable temperature PXRD patterns (Cu K α , $\lambda = 1.54178$ Å) were collected on Bruker Advance D8 DA VANCI diffractometer for **1** in the temperature range of 303–383 K.

Variable-temperature polarization microscopy

Variable-temperature polarization microscopy observations were carried out with a polarizing microscope Leica DM2500 P equipped with a Linkam cooling/heating stage THMSE 600. The temperature was stabilized with an accuracy of ± 0.1 K.

Elemental analysis

Elemental (C, H, and N) analyses were performed on a Perkin-Elmer Vario EL elemental analyzer with as-synthesized samples.

Deduction of domain orientation

During the phase transition from Pnma (HTP) to $P2_1/n11$ (RTP), a symmetry breaking occurs from 8 (E, i, $3C_2$, 3σ) to 4 (E, i, C_2 , σ_h) symmetry elements, classifying 1 to be an mmmF2/m ferroelastic species with two possible orientation states in the ferroelastic phase, according to Aizu.² The spontaneous strain within these two states are expressed as

$$\varepsilon_{ij}^{(1)} = \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{22} & \varepsilon_{23} \\ 0 & \varepsilon_{23} & \varepsilon_{33} \end{bmatrix}, \ \varepsilon_{ij}^{(2)} = \begin{bmatrix} \varepsilon_{11} & 0 & 0 \\ 0 & \varepsilon_{22} & -\varepsilon_{23} \\ 0 & -\varepsilon_{23} & \varepsilon_{33} \end{bmatrix}$$

The modified spontaneous strains proposed by Aizu³ are then

$$\varepsilon_{sij}^{(i)} = \varepsilon_{ij}^{(i)} - \frac{1}{q} \sum_{k=1}^{q} \varepsilon_{ij}^{(k)} \quad (i = 1, 2, ..., q)$$

In this case,

$$\varepsilon_{sij}^{(1)} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \varepsilon_{23} \\ 0 & \varepsilon_{23} & 0 \end{bmatrix}, \, \varepsilon_{sij}^{(2)} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -\varepsilon_{23} \\ 0 & -\varepsilon_{23} & 0 \end{bmatrix}$$

considering the compatibility condition of spontaneous strain⁴

$$[\varepsilon_{sij}^{(1)} - \varepsilon_{sij}^{(2)}]x_i x_j = 0$$

where x_i and x_j are components of unit vector on domain walls, we obtain $2\varepsilon_{23}yz = 0$, which gives the orientation of domain walls y = 0 and z = 0.

Table S1. Crystal data and structure refinement parameters for 1 at RTP and HTP.

Compound		1			
Formula	(Me ₃ NOH) ₂ [ZnCl ₄]				
$T(\mathbf{K})$	293(2)	373(2)			
Phases	RTP	HTP			
Crystal system	Monoclinic	Orthorhombic			
Space group	$P2_{1}/n11$	Pnma			
a/Å	12.2339(2)	12.2052(6)			
$b/ m \AA$	8.5620(1)	8.7156(4)			
$c/ ext{Å}$	15.2029(3)	15.4497(7)			
$lpha\!/^{\!\mathrm{o}}$	100.244(2)	90			
V /Å 3	1567.07(5)	1643.5(2)			
Z	4	4			
$D_{ m c}/{ m g~cm^{-3}}$	1.523	1.453			
reflns coll.	3148	1548			
unique reflns	2872	945			
$R_1[I > 2\sigma(I)]$	0.0393	0.1131			
$wR_2[I > 2\sigma(I)]$	0.1125	0.4149			
R_1 a (all data)	0.0414	0.1243			
wR ₂ ^b (all data)	0.1162	0.4536			
GOF	1.080	1.088			
CCDC number	1915260	1915261			

 $^{^{}a}R_{1} = \sum ||F_{0}| - |F_{c}||/\sum |F_{0}|, ^{b}wR_{2} = \{\sum w[(F_{0})^{2} - (F_{c})^{2}]^{2}/\sum w[(F_{0})^{2}]^{2}\}^{1/2}$

Table S2. Selected bond lengths (Å) for 1 at RTP and HTP.

RTP		НТР			
Zn1–Cl1	2.2472(7)	Zn1-Cl1#1	2.216(2)		
Zn1–Cl2	2.2375(8)	Zn1–Cl1	2.216(2)		
Zn1-C13	2.2999(7)	Zn1–Cl2	2.251(3)		
Zn1-Cl4	2.2807(7)	Zn1-C13	2.243(3)		
N1-O1	1.421(2)	N1-O1	1.426(9)		
N1-C1	1.480(3)	N1-C1	1.474(9)		
N1-C2	1.475(3)	N1-C2	1.497(9)		
N1-C3	1.478(3)	N1-C3	1.456(9)		
N2-O2	1.427(3)	N2-O2	1.426(9)		
N2-C4	1.471(4)	N2-C4	1.470(9)		
N2-C5	1.451(4)	N2-C5	1.463(9)		
N2-C6	1.486(4)	N2-C6	1.482(9)		

Symmetry codes: #1, (x, 1/2-y, z)

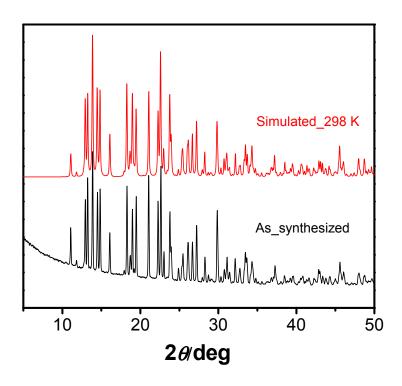
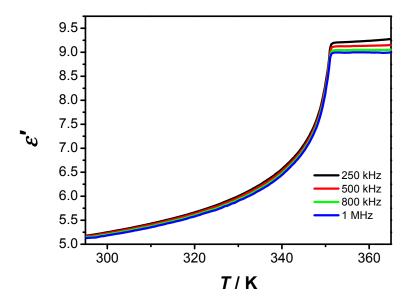
Table S3. Selected bond angles (°) for 1 at RTP and HTP.

RTP		НТР			
Cl1-Zn1-Cl2	111.88(4)	Cl1-Zn1-Cl1 ^{#1}	108.1(2)		
C11-Zn1-C13	107.46(3)	Cl1-Zn1-Cl2	109.5(2)		
Cl1-Zn1-Cl4	109.47(3)	Cl1-Zn1-Cl3	109.1(2)		
C12-Zn1-C13	110.73(3)	Cl2-Zn1-Cl3	111.4(2)		
C12-Zn1-C14	109.83(3)	O1–N1–C1	103.0(12)		
Cl3-Zn1-Cl4	107.33(3)	O1-N1-C2	106.6(12)		
O1-N1-C1	108.1(2)	O1–N1–C3	110.4(12)		
O1-N1-C2	109.9(2)	C1-N1-C2	110.0(12)		
O1-N1-C3	104.6(2)	C1-N1-C3	114.4(12)		
C1-N1-C2	112.1(2)	C2-N1-C3	111.9(12)		
C1-N1-C3	110.7(2)	O2-N2-C4	108.8(12)		
C2-N1-C3	111.2(2)	O2-N2-C5	106.9(13)		
O2-N2-C4	107.5(3)	O2-N2-C6	104.0(12)		
O2-N2-C5	106.1(3)	C4-N2-C5	115.6(12)		
O2-N2-C6	107.7(3)	C4-N2-C6	107.4(12)		
C4-N2-C5	111.6(3)	C5-N2-C6	113.5(12)		
C4-N2-C6	111.4(3)				
C5-N2-C6	112.3(3)				

Symmetry codes: #1, (x, 1/2-y, z)

Table S4. Calculated spontaneous strains for the *mmm*F2/*m* ferroelastic species.

Compounds	β/°	€ 13	\mathcal{E}_{22}	€ 33	$\mathcal{E}_{ ext{SS}}$	Ref
$(C_5N_2H_{16})_2[SbBr_5]$	116.79	-0.2223	-0.0006	-0.1195	0.355	S5
$(C_3H_5NH_3)_2[CdCl_4]$	108.54	-0.1608	-0.0386	-0.0412	0.239	S6
$(C_4H_9N)_2[PbBr_4]$	105.32	-0.1310	0.0034	-0.0433	0.191	S7
$(C_7H_{13}NH_3)_2[SnI_4]$	100.81	-0.0932	-0.0039	-0.0237	0.134	S8
1	100.24	-0.0875	0.0024	-0.0317	0.129	This work
$(Me_4P)_4[Mn(SCN)_6]$	97.70	-0.0648	0.0017	-0.0425	0.102	S9
$(Me_3NCH_2Br)_2[CoBr_4] \\$	93.44	-0.0308	0.0360	0.0247	0.068	S10
$(Me_3NCH_2Br)_2[ZnBr_4]$	93.54	-0.0305	-0.0021	-0.0151	0.048	S11
(N-Methylpyrrolidinium)[MnCl ₃]	93.19	-0.0279	-0.0033	0.0025	0.045	S12
$(Me_3NCH_2Cl)_2[ZnCl_4] \\$	93.35	-0.0289	-0.0137	-0.0113	0.045	S13
N-methylcyclohexylamine picrate	93.47	-0.0302	0.0034	-0.0040	0.044	S14
$(C_5H_{12}N)[CdCl_3]$	92.30	-0.0196	0.0139	-0.0249	0.040	S15
$(F-TEDA)(BF_4)_2$	91.99	-0.0170	-0.0088	-0.0206	0.033	S16
$(C_6H_{14}N)[PbI_3]$	92.09	-0.0181	-0.0177	-0.0059	0.032	S17
$(NMe_4)_2[HgCl_4]$	89.64	0.0031	-0.0100	-0.0238	0.027	S18
[C ₇ H ₇ NOF ₃ (18-crown-6)]PF ₆	90.01	-0.0001	-0.0032	-0.0035	0.016	S19
$(C_3H_4NS)[CdBr_3]$	90.53	-0.0046	0.0012	-0.0003	0.009	S20
$(C_3H_4NS)[CdCl_3]$	90.23	-0.0020	0.0005	-0.0018	0.008	S21

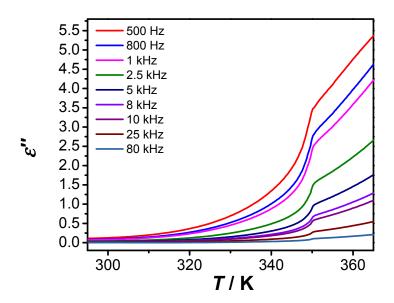

Figure S1. The PXRD patterns confirmed the phase purity of the as-synthesized sample 1.

Figure S2. The variable-temperature powder X-ray diffraction patterns of 1.

Figure S3. Temperature dependence of \mathcal{E} of 1 measured on the powder sample at 250-1000 kHz.

Figure S4. Temperature dependence of \mathcal{E} ' of 1 measured on the powder sample at 0.5-80 kHz.

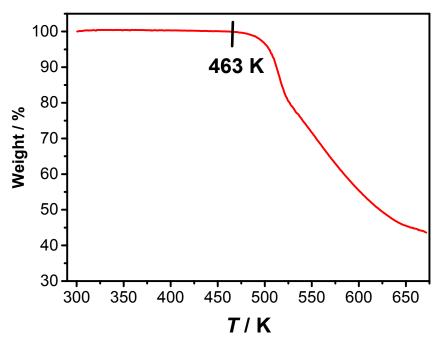
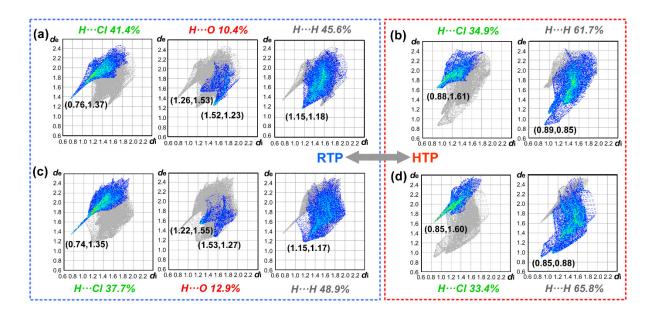



Figure S5. TG profiles of 1.

Figure S6. Decomposed fingerprint plots for **1** resolved into H···Cl, H···O and H···H contacts. Upper for Me₃NOH⁺ with O1 atom and the bottom for Me₃NOH⁺ with O2 atom.

Reference

- S1. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.
- S2. K. Aizu, J. Phys. Soc. Jpn., 1969, 27, 387-396.
- S3. K. Aizu, J. Phys. Soc. Jpn., 1970, 28, 706-716.
- S4. J. Sapriel, *Phys. Rev. B*, 1975, **12**, 5128.
- S5. C.-Y. Mao, W.-Q. Liao, Z.-X. Wang, Z. Zafar, P.-F. Li, X.-H. Lv and D.-W. Fu, *Inorg. Chem.*, 2016, **55**, 7661-7666.
- S6. S. Han, X. Liu, J. Zhang, C. Ji, Z. Wu, K. Tao, Y. Wang, Z. Sun and J. Luo, *J. Mater. Chem. C*, 2018, **6**, 10327-10331.
- S7. Z.-X. Wang, W.-Q. Liao, H.-Y. Ye and Y. Zhang, *Dalton Trans.*, 2015, **44**, 20406-20412.
- S8. X.-N. Li, P.-F. Li, Z.-X. Wang, P.-P. Shi, Y.-Y. Tang and H.-Y. Ye, *Polyhedron*, 2017, **129**, 92-96.
- Q. Li, P.-P. Shi, Q. Ye, H.-T. Wang, D.-H. Wu, H.-Y. Ye, D.-W. Fu and Y. Zhang, *Inorg. Chem.*, 2015,
 54, 10642-10647.
- S10. X.-N. Hua, C.-R. Huang, J.-X. Gao, Y. Lu, X.-G. Chen and W.-Q. Liao, *Dalton Trans.*, 2018, 47, 6218-6224.
- S11. J.-X. Gao, X.-N. Hua, P.-F. Li, X.-G. Chen and W.-Q. Liao, *J. Phys. Chem. C*, 2018, **122**, 23111-23116.
- S12. X.-F. Sun, P.-F. Li, W.-Q. Liao, Z. Wang, J. Gao, H.-Y. Ye and Y. Zhang, *Inorg. Chem.*, 2017, **56**, 12193-12198.
- S13. W.-Q. Liao, J.-X. Gao, X.-N. Hua, X.-G. Chen and Y. Lu, J. Mater. Chem. C, 2017, 5, 11873-11878.
- S14. K. Tao, Z. Wu, S. Han, J. Zhang, C. Ji, Y. Wang, W. Zhang, J. Luo and Z. Sun, *J. Mater. Chem. C*, 2018, **6**, 4150-4155.
- S15. A. Zeb, Z. Sun, T. Khan, M. A. Asghar, Z. Wu, L. Li, C. Ji and J. Luo, *Inorg. Chem. Front.*, 2017, 4, 1485-1492.
- S16. Y.-W. Zhang, P.-P. Shi, W.-Y. Zhang, Q. Ye and D.-W. Fu, *Inorg. Chem.*, 2018, **57**, 10153-10159.
- S17. A. Zeb, Z. Sun, A. Khan, S. Zhang, T. Khan, M. A. Asghar and J. Luo, *Inorg. Chem. Front.*, 2018, 5, 897-902.
- S18. M. Amami, S. van Smaalen, L. Palatinus, A. Ben Salah, X. Helluy and A. Sebald, *Z. Kristallogr. Cryst. Mater.*, 2002, **217**, 532.
- S19. P.-F. Li, W.-Q. Liao, Q.-Q. Zhou, H.-Y. Ye and Y. Zhang, *Inorg. Chem. Commun.*, 2015, **61**, 77-81.
- S20. W.-Q. Liao, H.-Y. Ye, Y. Zhang and R.-G. Xiong, *Dalton Trans.*, 2015, 44, 10614-10620.
- S21. G.-Q. Mei and W.-Q. Liao, J. Mater. Chem. C, 2015, 3, 8535-8541.