Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Halogen-bond mediated efficient storage of extremely volatile perfluoroiodides in ionic liquids

Delphine Gaspard,^{a,c} Kenneth. R. Seddon,^{a,d} Peter K. J. Robertson^b and H. Q. Nimal Gunaratne^{*a,b}

^aThe QUILL Research Centre, School of Chemistry and Chemical Engineering, the Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.

^bSchool of Chemistry and Chemical Engineering, the Queen's University of Belfast, Stranmillis Road, Belfast, Northern Ireland, BT9 5AG, UK.

^cEcole Supérieure de Chimie Organique et Minérale (Escom), Paris.

^dDiseased

General materials and methods

Unless otherwise stated, all chemicals were purchased from either Sigma-Aldrich or TCI (UK) and used without further purifications.

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance III 400 spectrometer (400 MHz). ESMS-mass spectroscopy measurements were carried out on a Waters LCT Premier instrument with an Advion TriVersa NanoMate injection system (cone voltage 50 V, source 120 °C). Both positive and negative ions were detected, with an m/z range of 50 to 1500. Samples were injected as dilute solutions in dry acetonitrile. FTIR spectra were obtained at room temperature on a PerkinElmer Spectrum 100 (ATR-IR).

TGA: The temperature of decomposition was measured on a TA instrument TGA Q5000 with a heating rate of 10 °C min⁻¹ under dinitrogen atmosphere. The onset of the weight loss in each thermogram was used as a measure of the decomposition temperature.

DSC: Thermal profiles of the ionic liquids were obtained using a TA DSC Q2000 model with a TA Refrigerated Cooling System 90 (RCS), equipped with an auto-sampler. A cooling and heating ramp of 2 °C min⁻¹ was used, ranging between -100 °C and 120 °C, depending on the ionic liquid system.

Synthesis of ionic liquids

The ionic liquids, [bmim]Cl, [bmim]Br, [bmim]I, $[bmim][NTf_2]$ and $[bmim][CH_3OSO_3]$ were synthesised using procedures reported in the literature.¹ Four ionic liquids, [bmim][OAc], $[bmim][CF_3CO_2]$, [bmim][SCN] and $[bmim][CF_3SO_3]$ were donated to us by Merck.

All ionic liquids were dried at 60 °C on a high vacuum line for 24 h and stored in a desiccator over $CaCl_2$.

Notes: It is noteworthy that $[bmim][NTf_2]$ and $CF_3CF_2CF_2CF_2I$ did not mix at the molar ratio that was used in this work. A clear phase separation was observed and hence, $[bmim][NTf_2]$ was eliminated from the study.

Synthesis of ionic liquid (1)

Tris[2-(2-methoxyethoxy)ethyl]amine (3.23g, 10 mM) was taken up in CH_3CN (5 cm³) in a screw cap tube to which iodomethane (1.7g, 12 mM) was added, then sealed with a screw cap and heated at 50 °C for 24 h. The reaction mixture was cooled, the solvent and the excess iodomethane were removed on a Rotavap to yield a light brown liquid which was further dried on high vacuum line at 60 °C to obtain (**1**) as a pale yellow liquid.

(1): ¹H NMR (400 MHz, in CDCl₃): δ 4.05-3.95 (brm, 12H, 6xOCH₂), 3.71-3.68 (m, 6H, 3xOCH₂), 3.54- 3.52 (m, 6H, 3xN⁺CH₂), 3.44 (s, 3H, N⁺CH₃), 3.36 (s, 9H, 3xOCH₃).

¹³C NMR (101 MHz, in CDCl₃): δ 71.48, 70.31, 64.86, 63.33, 58.86, 50.93.

ESMS: For cation $[C_{16}H_{36}NO_6]$ requires 338.2543; observed 338.2519 For anion [I] requires 126.9045; observed 126.9041

NMR spectra of new ionic liquids:

Figure S1: ¹H NMR (400 MHz) of ionic liquid (1) in CDCl₃

Figure S2: ¹³C NMR (101 MHz) of ionic liquid (1) in CDCl₃

Figure S3: The Thermogravimetric analysis data of (1) (scan rate was set at 10 °C m⁻¹)

Figure S4: Differential scanning calorimetry of (1) (scan rate 5 °C m⁻¹)

Apparatus for conducting the experiments related to release of the perfluoroiodide from an ionic liquid matrix

Figure S5: A; Glass jar with an inner compartment to house the GC-vial containing a mixture of ionic liquid and perfluoroiodide, **B**; final setup in a thermostatic oil bath with a drying tube attachment.

Additional gravimetric experiments:

- (a) C_4F_9I (1 eq.) dissolved in ionic liquid (1; 1.2 eq.) can be heated to 50 °C in the apparatus shown in figure S5 and the released perfluoroiodide can be collected in a tube, cooled in dry ice, connected via the ground glass joint of the main apparatus. All the 'release' experiments were carried out in an efficient fumehood.
- (b) In a screw capped glass bottle, ionic liquid (1; 5 mM, 2.33g) was loaded with C_4F_9I (4 mM, 1.38g) was kept in a fumehood at room temperature. The total weight of the bottle containing ionic liquid and perfluoroiodide were measured at appropriate time intervals.

Total weight of bottle + IL+ C_4F_9I = 29.71 g (t= 0 days) = 29.70 g (t= 7 days) = 29.67 g (t= 30 days)

= 29.63 g (t= 90 days)

Figure S6: A; Glass jar with an inner compartment to house the GC-vial containing a mixture of ionic liquid and perfluoroiodide, B; final setup in a thermostatic oil bath with a drying tube attachment.

References

 Ionic Liquids in Synthesis, P. Wasserscheid and T. Welton, John Wiley & Sons, 25 Jun 2008; A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskey and G. A. Baker, Green Chem., 2007, 9, 449–454