Electronic Supplementary Information

meso-Alkylidenyl dibenzihexaphyrins: Synthesis and protonation studies

Seong-Jin Hong, Ranjan Dutta, Ravi Kumar, Qing He, Vincent M. Lynch, Jonathan L. Sessler and Chang-Hee Lee

Table of Contents

Synthetic Experimental	S2 - S4
Spectroscopic data for compound 3-7	S5 - S13
¹ H NMR titration data for compound 5 , 6 , and 7 with TFA	S13-S18
UV-vis titration data for compound 5 and 6 with TFA and TBAF	S18-S22
Possible tautomeric forms of compound 5 and 6	S23
Crystallographic data	S24-S28
References	S28

General Procedure: ¹H and ¹³C NMR spectra (JNM-ECZ400S/L1 400 MHz and Bruker Avance II 600 MHz) were recorded using TMS as the internal standard. High resolution mass spectra were obtained on a Voyager-DE STR MALDI-TOF mass spectrometer and a JEOL JMS-700 GC mass spectrometer. UV-visible spectral studies were performed using Varian Cary 100 Conc spectrophotometer. Column chromatography was performed over silica gel (Merck, 230-400 mesh). Pyrrole was distilled at atmospheric pressure from CaH₂. All other reagents were obtained from Aldrich and used as received unless noted otherwise.

Synthetic Experimental

Synthesis of compound (3): To the solution of compound 1^1 (0.20 g, 0.51 mmol) and pyrrole (5 mL, 72.1 mmol) was added InCl₃ (0.036 g, 0.16 mmol). The mixture was stirred for 1 h at 40 °C. Then aqueous NaOH solution (0.1 *N*, 5 mL) and brine (30 mL) were added in order to quench the reaction before the mixture was extracted with CH₂Cl₂ (20 mL × 3). The organic layer was dried (Na₂SO₄) and the volatiles were removed in *vacuo*. The crude product was recrystallized from MeOH and hexanes to give a brownish solid. Yield: 0.182 g (68%); ¹H NMR (400 MHz, CDCl₃, diastereomers) δ 3.59 – 3.61 (m, 2H), 4.95 – 4.97 (m, 2H), 5.86 – 5.90 (m, 2H), 6.05 – 6.09 (m, 2H), 6.73 – 6.76 (m, 2H), 6.76 – 6.86 (m, 3H), 6.95 – 6.96 (m, 1H), 7.70 – 7.73 (m, 3H), 7.73 – 7.86 (m, 4H), 7.91 – 7.93 (m, 1H), 9.71 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 42.4, 42.6, 59.0, 59.0, 106.8, 106.8, 107.9, 117.9, 123.3, 123.4, 123.4, 123.5, 126.6, 126.8, 127.5, 127.6, 128.5, 128.6, 130.9, 131.0, 135.5, 135.9, 136.0, 140.0, 140.0, 142.3, 142.4, 142.5, 198.5, 198.6, 200.9, 200.9; EI MS calcd for C₃₄H₂₄N₂O₄ 524.1736, found 524.1735.

Synthesis of *m*-dibenzihexaphyrin (5): Compound 3 (1.01 g, 1.93 mmol) and pentafluorobenzaldehyde (290 μ L, 2.35 mmol) were dissolved in CH₂Cl₂ (200 mL) with stirring and then TFA (80 μ L, 1.04 mmol) was added. The resulting mixture was stirred for 12 h at room temperature. DDQ (1.32 g, 5.81 mmol) and TEA (140 μ L, 1.00 mmol) were added and the stirring continued for 1 h. After quenching with brine (100 mL), an organic layer was obtained by extracting with CH₂Cl₂ (50 mL x 4). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product obtained in this way was purified by column chromatography over silica (from CH₂Cl₂ to CH₂Cl₂/EtOAc = 95/5) to give a yellowish

solid. Yield: 79 mg (6%); ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 2H), 6.74 – 6.75 (d, *J* = 4.8 Hz, 2H), 6.95 – 6.97 (d, *J* = 4.7 Hz, 2H), 7.31 (s, 2H), 7.36 – 7.38 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.53 (m, 4H), 7.62 – 7.64 (m, 2H), 7.66 – 7.72 (m, 4H), 7.73 – 7.77 (s, 4H), 7.80 – 7.83 (m, 4H), 7.97 – 8.01 (m, 4H), 14.27 (s, 2H); ¹³C NMR (150 MHz, TFA-*d*) δ 110.2, 126.0, 126.5, 129.6, 130.5, 131.1, 132.3, 133.0, 133.6, 135.9, 137.0, 137.5, 138.5, 138.9, 139.2, 139.6, 140.1, 140.3, 140.4, 140.4, 142.2, 142.8, 143.3, 143.6, 144.2, 146.9, 148.6, 151.9, 159.2, 191.6, 193.2, 194.9; MALDI-TOF MS calcd for C₈₂H₃₄F₁₀N₄O₈1392.222, found 1393.227.

Synthesis of compound (4): To a solution of compound 2^{1-2} (1.51 g, 3.86 mmol) and pyrrole (20 mL, 288.3 mmol) was added InCl₃ (0.255 g, 1.15 mmol). The resulting mixture was stirred for 1 h at 40 °C. An aqueous solution of NaOH (0.1 *N*, 5 mL) and brine (50 mL) was then added in order to quench the reaction before the mixture was extracted with CH₂Cl₂ (40 mL × 3). The organic layer was dried (Na₂SO₄) and the volatiles removed in *vacuo*. The crude product obtained in this way was recrystallized from MeOH and hexanes to give a brownish solid. Yield: 1.43 g (71%); ¹H NMR (400 MHz, CDCl₃ diastereomers) δ 3.62 – 3.63 (m, 2H), 4.98 – 4.99 (m, 2H), 5.92 – 5.94 (m, 2H), 6.04 – 6.07 (m, 2H), 6.73 – 6.75 (m, 2H), 6.78 (s, 4H), 7.71 – 7.82 (m, 6H), 7.85 – 7.89 (m, 2H), 9.72 (br s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 41.8, 41.9, 59.1, 59.2, 106.8, 107.9, 108.2, 117.9, 123.3, 123.4, 123.4, 128.1, 131.2, 131.2, 135.7, 136.0, 138.4, 142.3, 142.3, 142.4, 142.4, 198.5, 198.6, 200.8, 200.9; EI MS calcd for C₃₄H₂₄N₂O₄ 524.1736, found 524.1737.

Synthesis of *p*-dibenzihexaphyrin (6): Compound 4 (1.01 g, 1.93 mmol) and pentafluorobenzaldehyde (285 µL, 2.31 mmol) were dissolved in CH₂Cl₂ (200 mL) with stirring. Then, TFA (130 µL, 1.69 mmol) was added. The resulting mixture was stirred for 12 h at room temperature. DDQ (1.30 g, 5.74 mmol) and TEA (240 µL, 1.72 mmol) were added and the stirring continued for an additional 1 h. After quenching with brine (100 mL) an organic phase was obtained by extracting with CH₂Cl₂ (50 mL x 4). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product generated in this manner was purified by column chromatography over silica (from CH₂Cl₂ to CH₂Cl₂/EtOAc = 95/5) to give a yellowish solid. Yield: 195 mg (15%); ¹H NMR (400 MHz, CDCl₃) δ 6.38 – 6.40 (m, 2H), 6.88 (d, *J* = 4.7 Hz, 2H), 7.27 (s, 2H), 7.31 – 7.33 (m, 4H), 7.49 – 7.51 (m, 6H), 7.73 – 7.77 (m, 4H), 7.81 – 7.86 (m, 8H), 8.01 – 8.04 (m, 4H), 14.45 (s, 2H); ¹H NMR (600 MHz, TFA-*d*) δ 6.72 (d, *J* = 4.2 Hz, 2H), 7.17 (s, 2H), 7.51 (s, 2H), 7.53 (d, *J* = 7.80 Hz, 4H),

7.71 (d, J = 8.4 Hz, 4H), 7.73-7.74 (m, 2H), 7.90 - 7.94 (m, 6H), 7.98 - 8.02 (m, 6H), 8.05 - 8.07 (m, 2H), 8.13 - 8.14 (m, 2H); ¹³C NMR (150 MHz, TFA-*d*) δ 110.1, 126.3, 126.7, 126.8, 126.8, 130.3, 130.8, 131.9, 132.1, 133.6, 134.6, 136.0, 136.2, 137.1, 138.0, 139.0, 140.0, 140.2, 140.6, 140.7, 140.8, 140.8, 142.1, 142.5, 143.1, 143.2, 143.4, 143.9, 147.2, 148.4, 149.0, 151.4, 160.7, 192.2, 193.1, 193.8, 195.2; MALDI-TOF MS calcd for C₈₂H₃₄F₁₀N₄O₈ 1392.222, found 1393.259.

Synthesis of *p*-benzithiaporphyrin (7): Compound 4 (0.2 g, 0.38 mmol) and 2,5bis-thiophene-dimethanol (0.14 g, 0.47 mmol) were dissolved in CH₂Cl₂ (40 mL) with stirring. Then, TFA (15 μ L, 0.19 mmol) was added. The resulting mixture was stirred for 24 h at room temperature. At this point, DDQ (0.26 g, 1.15 mmol) and TEA (27 μ L, 0.19 mmol) were added and the stirring continued for an additional 1 h. After quenching with brine (100 mL) and extracting with CH₂Cl₂ (50 mL x 3), the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product obtained in this way was purified by column chromatography over silica gel (eluent gradient from CH₂Cl₂ to CH₂Cl₂/EtOAc = 95/5) to give a black solid. Yield: 17 mg (6%); ¹H NMR (400 MHz, CDCl₃) δ 6.24 – 6.25 (m, 2H), 6.48 (s, 2H), 7.30 – 7.32 (m, 4H), 7.43 – 7.45 (m, 6H), 7.58 (s, 4H), 7.68 – 7.73 (m, 4H), 7.88- 7.89 (m, 2H), 7.93 – 7.95 (m, 2H), 8.50 (br s, 2H), 8.52 – 8.53 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 119.7, 121.9, 122.2, 123.0, 124.0, 125.9, 128.5, 128.6, 129.2, 130.7, 133.8, 134.1, 134.3, 134.6, 138.0, 139.2, 139.9, 140.4, 140.9, 141.3, 145.9, 189.8, 189.8; MALDI-TOF MS calcd for C₅₂H₃₀N₂O₄S 778.193, found 778.269.

Figure S2. ¹³C NMR spectrum of compound 3 in CDCl₃.

 $\begin{bmatrix} Mass \; Spectrum \; \\ Data : SJHONG-I-55 \; HR & Date : 10-Jul-2019 \; 10:24 \\ RT : 1.27 \; min & Scan# : 34 \\ Elements : C \; 34/0, H \; 69/0, N \; 2/0, O \; 4/0 \\ Mass \; Tolerance & : 1000ppm, \; 5mmu \; if \; m/z < 5, \; 50mmu \; if \; m/z > 50 \\ Unsaturation \; (U.S.) : -0.5 - 50.0 \\ \end{bmatrix}$

Figure S3. EI MS spectrum of compound 3.

Figure S4. ¹H NMR spectrum of compound 5 in CDCl₃.

Figure S5. ¹³C NMR spectrum of compound 5 in TFA-*d*.

Figure S6. MALDI-TOF MS spectrum of compound 5.

Figure S8. ¹³C NMR spectrum of compound 4 in CDCl₃.

Figure S9. EI MS spectrum of compound 4.

Figure S10. ¹H NMR spectrum of compound 6 in CDCl₃.

Figure S11. ¹H NMR spectrum of compound 6 in TFA-*d*.

Figure S12. ¹³C NMR spectrum of compound 6 in TFA-*d*.

Figure S13. MALDI-TOF MS spectrum of compound 6.

Figure S15. ¹³C NMR spectrum of compound 7 in CDCl₃.

Figure S17. Partial ¹H NMR spectral changes observed when compound **5** is subject to treatment with TFA in CDCl₃ (8.37 X 10⁻³ M) at 50 °C. The new resonance at 4.72 ppm is ascribed to protonation at the *meso-* α -position.

Figure S18. Partial ¹H NMR spectral changes observed when compound **6** is treated with TFA in CDCl₃ (8.37 X 10⁻³ M) at 50 °C. The new resonance at 4.72 ppm is ascribed to protonation at the *meso-* α -position.

Figure S19. Partial ¹H NMR spectral changes observed when compound **7** is treated with TFA in CDCl₃ (1.07 X 10⁻² M) at 50 °C. The new resonance at 4.72 ppm results from protonation at the *meso-* α -position.

16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (pom)

Figure S20. Partial ¹H NMR spectral changes observed when compound **5** (8.37 X 10⁻³ M) is subject to treatment with TBAF in CDCl₃ at room temperature.

15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 fl(ppm)

Figure S21. Partial ¹H NMR spectral changes observed when compound **6** (8.37 X 10⁻³ M) is subject to treatment with TBAF in CDCl₃ at room temperature.

16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 fl (ppm)

Figure S22. Partial ¹H NMR spectral changes of compound **5** (8.37 X 10⁻³ M) in the presence of 10 equiv. of TFA in CDCl₃ at low temperatures.

Figure S23. Partial ¹H NMR spectral changes of compound 6 (8.37 X 10^{-3} M) in the presence of 10 equiv. of TFA in CDCl₃ at low temperatures.

Figure S24. Partial ¹H NMR spectra of compound **5** (8.37 X 10⁻³ M) in different solvents. Signals marked with (*) denote residual CHCl₃ solvent signals.

Figure S25. Partial ¹H NMR spectra of compound 6 (8.37 X 10⁻³ M) in different solvents.

Figure S26. UV-vis spectral changes seen when 5 (4.31 x 10^{-6} M) is treated with TFA in CH₂Cl₂.

Figure S27. UV-vis spectral changes observed when 6 (4.31 x 10^{-6} M) is subject to treatment with TFA in CH₂Cl₂.

Scheme S1. Possible chemical structures generated from 5 and 6 upon treatment with TBAF.

Figure S28. UV-vis spectral changes observed when 5 (4.31 x 10^{-6} M) is subject to treatment with TBAF in CH₂Cl₂.

Figure S29. UV-vis spectral changes observed when 6 (2.87 x 10^{-6} M) is subject to treatment with TBAF in CH₂Cl₂.

Figure S30. UV-vis spectral changes observed when 5 (4.31 x 10^{-6} M) is subject to treatment with TFA in CH₃CN.

Figure S31. UV-vis spectral changes observed when 6 (2.87 x 10^{-6} M) is subject to treatment with TFA in CH₃CN.

Figure S32. UV-vis spectral changes observed when 5 (4.31 x 10^{-6} M) is subject to treatment with TFA in DMSO.

Figure S33. UV-vis spectral changes observed when 6 (2.87 x 10^{-6} M) is subject to treatment with TFA in DMSO.

Scheme S2. Possible tautomeric forms of compounds 5 and 6.

Crystallographic data

Table S1 Crystal data and struct	ure refinement for compound 6.
Identification code	Compound 6
Empirical formula	$C_{168}H_{72}Cl_{12}F_{20}N_8O_{16}$
Formula weight	3263.73
Temperature/K	99.95(18)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	19.5016(3)
b/Å	35.2797(7)
c/Å	23.3317(6)
α/°	90
β/°	90.269(2)
γ/°	90
Volume/Å ³	16052.3(6)
Z	4
$\rho_{calc}g/cm^3$	1.350
µ/mm ⁻¹	2.647
F(000)	6592.0
Crystal size/mm ³	0.152 imes 0.091 imes 0.069
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
2Θ range for data collection/°	4.532 to 148.312
Index ranges	$-23 \le h \le 22, -37 \le k \le 42, -28 \le l \le 27$
Reflections collected	91104
Independent reflections	$31428 [R_{int} = 0.0941, R_{sigma} = 0.1222]$
Data/restraints/parameters	31428/0/2017
Goodness-of-fit on F ²	1.008
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0943, wR_2 = 0.2450$
Final R indexes [all data]	$R_1 = 0.1770, wR_2 = 0.3053$
Largest diff. peak/hole / e Å ⁻³	0.91/-0.93
CCDC number	1921511

Tuble 52 et jour auta and ser actar	e remement for compound o 21111
Identification code	Compound 6•2TFA
Empirical formula	C ₁₈ H ₁₅ ClFN ₄ O
Formula weight	303.34
Temperature/K	100.15
Crystal system	triclinic
Space group	P-1
a/Å	12.9539(16)
b/Å	14.4757(18)
c/Å	14.7250(18)
$\alpha/^{\circ}$	70.698(3)
β/°	66.001(3)
γ/°	67.022(3)
Volume/Å ³	2273.4(5)
Z	2
$\rho_{calc}g/cm^3$	0.443
µ/mm ⁻¹	0.029
F(000)	318.0
Crystal size/mm ³	$0.54 \times 0.46 \times 0.33$
Radiation	MoKa ($\lambda = 0.71073$ Å)
2Θ range for data collection/°	5.986 to 50.7
Index ranges	$\text{-15} \le h \le \text{15}, \text{-16} \le k \le \text{17}, \text{-17} \le l \le \text{17}$
Reflections collected	32004
Independent reflections	8323 [$R_{int} = 0.0324, R_{sigma} = 0.0278$]
Data/restraints/parameters	8323/88/663
Goodness-of-fit on F ²	1.058
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0478, wR_2 = 0.1351$
Final R indexes [all data]	$R_1 = 0.0531, wR_2 = 0.1395$
Largest diff. peak/hole / e Å ⁻³	0.54/-0.65
CCDC number	1921509

Table S2 Crystal data and structure refinement for compound 6•2TFA.

Table 55 Crystal uata and struc	ture rennement for compound 7.
Identification code	Compound 7
Empirical formula	$C_{53}H_{31}Cl_{3}N_{2}O_{4}S$
Formula weight	898.21
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	11.9568(7)
b/Å	12.3682(8)
c/Å	14.6936(10)
$\alpha/^{\circ}$	109.732(6)
β/°	92.669(5)
γ/°	92.147(5)
Volume/Å ³	2039.9(2)
Z	2
$\rho_{calc}g/cm^3$	1.462
µ/mm ⁻¹	2.945
F(000)	924.0
Crystal size/mm ³	$0.54 \times 0.32 \times 0.31$
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
2 Θ range for data collection/°	6.404 to 151.78
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -18 \le l \le 17$
Reflections collected	18981
Independent reflections	8001 [$R_{int} = 0.0835$, $R_{sigma} = 0.1040$]
Data/restraints/parameters	8001/0/568
Goodness-of-fit on F ²	1.085
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0885, wR_2 = 0.2358$
Final R indexes [all data]	$R_1 = 0.1232, wR_2 = 0.2528$
Largest diff. peak/hole / e Å ⁻³	0.62/-1.11
CCDC number	1921508

Table S3 Crystal data and structure refinement for compound 7.

Table 54 Crystal uata anu structure r	ennement for Compound 6.
Identification code	Compound 8
Empirical formula	$C_{72.89}H_{33.78}ClF_{8.89}N_{3.56}O_{10.67}$
Formula weight	1298.81
Temperature/K	99.97(16)
Crystal system	tetragonal
Space group	I4 ₁ /a
a/Å	20.1536(4)
b/Å	20.1536(4)
c/Å	55.493(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	22539.3(12)
Ζ	9
$\rho_{calc}g/cm^3$	0.861
µ/mm ⁻¹	0.593
F(000)	5952.0
Crystal size/mm ³	$0.48\times0.39\times0.33$
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$
2Θ range for data collection/°	6.974 to 152.256
Index ranges	$-25 \le h \le 24, -25 \le k \le 14, -61 \le l \le 69$
Reflections collected	47049
Independent reflections	11321 [$R_{int} = 0.0605, R_{sigma} = 0.0535$]
Data/restraints/parameters	11321/0/488
Goodness-of-fit on F ²	1.180
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1311, wR_2 = 0.3318$
Final R indexes [all data]	$R_1 = 0.1782, wR_2 = 0.3889$
Largest diff. peak/hole / e Å-3	1.47/-0.30
CCDC number	1921510

Table S4 Crystal data and structure refinement for Compound 8.

Figure S34. The single crystal X-ray structure of compound 7. Top and side views. The indanedionyl groups are almost in the same plane as the cross-conjugated part of the macrocycle. Thermal ellipsoids are scaled to the 50% probability level.

References:

- 1. Siddiqui, Z. N.; Khan, T. Tetrahedron Lett. 2013, 54, 3759-3764.
- Xiao, P.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Vidal, L. Gigmes, D.; Fouassier, J. P.; Lalevee, J. *Macromolecules* 2014, 47, 23-34.