Electronic Supplementary Information

meso-Alkylidenyl dibenzihexaphyrins: Synthesis and protonation studies

Seong-Jin Hong, Ranjan Dutta, Ravi Kumar, Qing He, Vincent M. Lynch, Jonathan L. Sessler and Chang-Hee Lee

Table of Contents

Synthetic Experimental S2-S4
Spectroscopic data for compound 3-7 S5-S13
${ }^{1} \mathrm{H}$ NMR titration data for compound $\mathbf{5}, \mathbf{6}$, and $\mathbf{7}$ with TFA S13-S18
UV-vis titration data for compound $\mathbf{5}$ and $\mathbf{6}$ with TFA and TBAF S18-S22
Possible tautomeric forms of compound 5 and $\mathbf{6}$ S23
Crystallographic data S24-S28
References S28

General Procedure: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (JNM-ECZ400S/L1 400 MHz and Bruker Avance II 600 MHz) were recorded using TMS as the internal standard. High resolution mass spectra were obtained on a Voyager-DE STR MALDI-TOF mass spectrometer and a JEOL JMS-700 GC mass spectrometer. UV-visible spectral studies were performed using Varian Cary 100 Conc spectrophotometer. Column chromatography was performed over silica gel (Merck, 230-400 mesh). Pyrrole was distilled at atmospheric pressure from CaH_{2}. All other reagents were obtained from Aldrich and used as received unless noted otherwise.

Synthetic Experimental

Synthesis of compound (3): To the solution of compound $\mathbf{1}^{1}(0.20 \mathrm{~g}, 0.51 \mathrm{mmol})$ and pyrrole ($5 \mathrm{~mL}, 72.1 \mathrm{mmol}$) was added $\mathrm{InCl}_{3}(0.036 \mathrm{~g}, 0.16 \mathrm{mmol})$. The mixture was stirred for 1 h at $40^{\circ} \mathrm{C}$. Then aqueous NaOH solution $(0.1 \mathrm{~N}, 5 \mathrm{~mL})$ and brine (30 mL) were added in order to quench the reaction before the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the volatiles were removed in vacuo. The crude product was recrystallized from MeOH and hexanes to give a brownish solid. Yield: 0.182 g (68%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers) $\delta 3.59-3.61(\mathrm{~m}, 2 \mathrm{H}), 4.95-4.97(\mathrm{~m}, 2 \mathrm{H}), 5.86-5.90(\mathrm{~m}, 2 \mathrm{H}), 6.05-$ $6.09(\mathrm{~m}, ~, 2 \mathrm{H}), 6.73-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.96(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.73(\mathrm{~m}, 3 \mathrm{H}), 7.73-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.91-7.93(\mathrm{~m}, 1 \mathrm{H}), 9.71(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.4,42.6,59.0,59.0,106.8,106.8,107.9,117.9,123.3,123.4,123.4$, $123.5,126.6,126.8,127.5,127.6,128.5,128.6,130.9,131.0,135.5,135.9,136.0$, $140.0,140.0,142.3,142.4,142.5,198.5,198.6,200.9,200.9$; EI MS calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ 524.1736, found 524.1735.

Synthesis of \boldsymbol{m}-dibenzihexaphyrin (5): Compound 3 ($1.01 \mathrm{~g}, 1.93 \mathrm{mmol}$) and pentafluorobenzaldehyde ($290 \mu \mathrm{~L}, 2.35 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ with stirring and then TFA ($80 \mu \mathrm{~L}, 1.04 \mathrm{mmol}$) was added. The resulting mixture was stirred for 12 h at room temperature. DDQ $(1.32 \mathrm{~g}, 5.81 \mathrm{mmol})$ and TEA ($140 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ were added and the stirring continued for 1 h . After quenching with brine (100 mL), an organic layer was obtained by extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 4)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product obtained in this way was purified by column chromatography over silica (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=95 / 5$) to give a yellowish
solid. Yield: $79 \mathrm{mg}(6 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38$ (s, 2H), $6.74-6.75$ (d, J $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.97(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.77(\mathrm{~s}, 4 \mathrm{H})$, $7.80-7.83(\mathrm{~m}, 4 \mathrm{H}), 7.97-8.01(\mathrm{~m}, 4 \mathrm{H}), 14.27(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{TFA}-d\right) \delta$ $110.2,126.0,126.5,129.6,130.5,131.1,132.3,133.0,133.6,135.9,137.0,137.5$, $138.5,138.9,139.2,139.6,140.1,140.3,140.4,140.4,142.2,142.8,143.3,143.6$, 144.2, 146.9, 148.6, 151.9, 159.2, 191.6, 193.2, 194.9; MALDI-TOF MS calcd for $\mathrm{C}_{82} \mathrm{H}_{34} \mathrm{~F}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} 1392.222$, found 1393.227.

Synthesis of compound (4): To a solution of compound $\mathbf{2}^{1-2}(1.51 \mathrm{~g}, 3.86 \mathrm{mmol})$ and pyrrole ($20 \mathrm{~mL}, 288.3 \mathrm{mmol}$) was added $\mathrm{InCl}_{3}(0.255 \mathrm{~g}, 1.15 \mathrm{mmol})$. The resulting mixture was stirred for 1 h at $40^{\circ} \mathrm{C}$. An aqueous solution of $\mathrm{NaOH}(0.1 \mathrm{~N}, 5 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ was then added in order to quench the reaction before the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the volatiles removed in vacuo. The crude product obtained in this way was recrystallized from MeOH and hexanes to give a brownish solid. Yield: $1.43 \mathrm{~g}(71 \%) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, diastereomers) $\delta 3.62-3.63(\mathrm{~m}, 2 \mathrm{H}), 4.98-4.99(\mathrm{~m}, 2 \mathrm{H}), 5.92-5.94$ $(\mathrm{m}, 2 \mathrm{H}), 6.04-6.07(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 4 \mathrm{H}), 7.71-7.82(\mathrm{~m}, 6 \mathrm{H})$, 7.85 - $7.89(\mathrm{~m}, 2 \mathrm{H}), 9.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.8,41.9,59.1$, $59.2,106.8,107.9,108.2,117.9,123.3,123.4,123.4,128.1,131.2,131.2,135.7,136.0$, $138.4,142.3,142.3,142.4,142.4,198.5,198.6,200.8,200.9$; EI MS calcd for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ 524.1736, found 524.1737.

Synthesis of p-dibenzihexaphyrin (6): Compound $4(1.01 \mathrm{~g}, 1.93 \mathrm{mmol})$ and pentafluorobenzaldehyde ($285 \mu \mathrm{~L}, 2.31 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ with stirring. Then, TFA ($130 \mu \mathrm{~L}, 1.69 \mathrm{mmol}$) was added. The resulting mixture was stirred for 12 h at room temperature. DDQ $(1.30 \mathrm{~g}, 5.74 \mathrm{mmol})$ and TEA ($240 \mu \mathrm{~L}, 1.72 \mathrm{mmol}$) were added and the stirring continued for an additional 1 h . After quenching with brine $(100 \mathrm{~mL})$ an organic phase was obtained by extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \mathrm{x} 4)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product generated in this manner was purified by column chromatography over silica (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=95 / 5$) to give a yellowish solid. Yield: $195 \mathrm{mg}(15 \%)$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.38-6.40(\mathrm{~m}, 2 \mathrm{H}), 6.88$ (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.27(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.73-7.77$ (m, 4H), $7.81-7.86(\mathrm{~m}, 8 \mathrm{H}), 8.01-8.04(\mathrm{~m}, 4 \mathrm{H}), 14.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (600 MHz , TFA-d) $\delta 6.72(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 4 \mathrm{H})$,
$7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.73-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.94(\mathrm{~m}, 6 \mathrm{H}), 7.98-8.02(\mathrm{~m}, 6 \mathrm{H})$, 8.05-8.07 (m, 2H), 8.13-8.14 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, TFA-d) $\delta 110.1,126.3$, 126.7, 126.8, 126.8, 130.3, 130.8, 131.9, 132.1, 133.6, 134.6, 136.0, 136.2, 137.1, $138.0,139.0,140.0,140.2,140.6,140.7,140.8,140.8,142.1,142.5,143.1,143.2$, $143.4,143.9,147.2,148.4,149.0,151.4,160.7,192.2,193.1,193.8,195.2$; MALDITOF MS calcd for $\mathrm{C}_{82} \mathrm{H}_{34} \mathrm{~F}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} 1392.222$, found 1393.259.

Synthesis of p-benzithiaporphyrin (7): Compound 4 ($0.2 \mathrm{~g}, 0.38 \mathrm{mmol}$) and 2,5-bis-thiophene-dimethanol ($0.14 \mathrm{~g}, 0.47 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ with stirring. Then, TFA $(15 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$ was added. The resulting mixture was stirred for 24 h at room temperature. At this point, $\operatorname{DDQ}(0.26 \mathrm{~g}, 1.15 \mathrm{mmol})$ and TEA ($27 \mu \mathrm{~L}$, 0.19 mmol) were added and the stirring continued for an additional 1 h . After quenching with brine $(100 \mathrm{~mL})$ and extracting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude product obtained in this way was purified by column chromatography over silica gel (eluent gradient from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=95 / 5$) to give a black solid. Yield: $17 \mathrm{mg}(6 \%) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.24-6.25(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 7.30-$ $7.32(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.58(\mathrm{~s}, 4 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.88-7.89(\mathrm{~m}$, 2 H), $7.93-7.95(\mathrm{~m}, 2 \mathrm{H}), 8.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.52-8.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 119.7,121.9,122.2,123.0,124.0,125.9,128.5,128.6,129.2,130.7,133.8$, $134.1,134.3,134.6,138.0,139.2,139.9,140.4,140.9,141.3,145.9,189.8,189.8 ;$ MALDI-TOF MS calcd for $\mathrm{C}_{52} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 778.193$, found 778.269.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 in CDCl_{3}.

Figure $\mathbf{S} \mathbf{2} .{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ in CDCl_{3}.

```
[Mass Spectrum ]
Data : SJHONG-I-55 HR Date : 10-Jul-2019 10:24
RT : 1.27 min Scan\# : 34
```

Elements : C 34/0, H 69/0, N 2/0, O 4/0
Mass Tolerance : $1000 \mathrm{ppm}, 5 \mathrm{mmu}$ if $\mathrm{m} / \mathrm{z}\langle 5,50 \mathrm{mmu}$ if $\mathrm{m} / \mathrm{z}\rangle 50$
Unsaturation (U.S.) : $-0.5-50.0$

Figure S3. EI MS spectrum of compound 3.

Figure $\mathbf{S 4} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}$ in CDCl_{3}.

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5}$ in TFA- d.

Figure S6. MALDI-TOF MS spectrum of compound 5.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 in CDCl_{3}.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4}$ in CDCl_{3}.

$$
\begin{array}{cccccc}
\text { Observed m/z } & \text { Int\% } & \text { Err[ppm / mmu] } & \text { U.S. Composition } \\
1 & 524.1737 & 100.00 & +0.2 / & +0.1 & 24.0
\end{array}
$$

Figure S9. EI MS spectrum of compound 4.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ in CDCl_{3}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}$ in TFA-d.

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6 in TFA- d.

Figure S13. MALDI-TOF MS spectrum of compound 6 .

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7 in CDCl_{3}.

Figure S15. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7 in CDCl_{3}.

Figure S16. MALDI-TOF MS spectrum of compound 7.

Figure S17. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes observed when compound $\mathbf{5}$ is subject to treatment with TFA in $\mathrm{CDCl}_{3}\left(8.37 \mathrm{X} 10^{-3} \mathrm{M}\right)$ at $50^{\circ} \mathrm{C}$. The new resonance at 4.72 ppm is ascribed to protonation at the meso- α-position.

Figure S18. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes observed when compound $\mathbf{6}$ is treated with TFA in $\mathrm{CDCl}_{3}\left(8.37 \mathrm{X} 10^{-3} \mathrm{M}\right)$ at $50{ }^{\circ} \mathrm{C}$. The new resonance at 4.72 ppm is ascribed to protonation at the meso- α-position.

Figure S19. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes observed when compound 7 is treated with TFA in $\mathrm{CDCl}_{3}\left(1.07 \mathrm{X} 10^{-2} \mathrm{M}\right)$ at $50^{\circ} \mathrm{C}$. The new resonance at 4.72 ppm results from protonation at the meso- α-position.

Figure S20. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes observed when compound 5 (8.37 X 10-3 M) is subject to treatment with TBAF in CDCl_{3} at room temperature.

Figure S21. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes observed when compound 6 (8.37 X 10-3 M) is subject to treatment with TBAF in CDCl_{3} at room temperature.

Figure S22. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes of compound $5\left(8.37 \times 10^{-3} \mathrm{M}\right)$ in the presence of 10 equiv. of TFA in CDCl_{3} at low temperatures.

Figure S23. Partial ${ }^{1} \mathrm{H}$ NMR spectral changes of compound $6\left(8.37 \times 10^{-3} \mathrm{M}\right)$ in the presence of 10 equiv. of TFA in CDCl_{3} at low temperatures.

Figure S24. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound $5\left(8.37 \mathrm{X} 10^{-3} \mathrm{M}\right)$ in different solvents. Signals marked with (${ }^{*}$) denote residual CHCl_{3} solvent signals.

Figure S25. Partial ${ }^{1} \mathrm{H}$ NMR spectra of compound 6 (8.37 X 10-3 M) in different solvents.

Figure S26. UV-vis spectral changes seen when $\mathbf{5}\left(4.31 \times 10^{-6} \mathrm{M}\right)$ is treated with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S27. UV-vis spectral changes observed when $\mathbf{6}\left(4.31 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scheme S1. Possible chemical structures generated from 5 and $\mathbf{6}$ upon treatment with TBAF.

Figure S28. UV-vis spectral changes observed when $5\left(4.31 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TBAF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S29. UV-vis spectral changes observed when $6\left(2.87 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TBAF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S30. UV-vis spectral changes observed when $5\left(4.31 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TFA in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S31. UV-vis spectral changes observed when $6\left(2.87 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TFA in $\mathrm{CH}_{3} \mathrm{CN}$.

Figure S32. UV-vis spectral changes observed when $5\left(4.31 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TFA in DMSO.

Figure S33. UV-vis spectral changes observed when $\mathbf{6}\left(2.87 \times 10^{-6} \mathrm{M}\right)$ is subject to treatment with TFA in DMSO.

Scheme S2. Possible tautomeric forms of compounds 5 and $\mathbf{6}$.

Crystallographic data

Table S1 Crystal data and structure refinement for compound 6.

Identification code	Compound 6
Empirical formula	$\mathrm{C}_{168} \mathrm{H}_{72} \mathrm{Cl}_{12} \mathrm{~F}_{20} \mathrm{~N}_{8} \mathrm{O}_{16}$
Formula weight	3263.73
Temperature/K	99.95(18)
Crystal system	monoclinic
Space group	P21/c
a / \AA	19.5016(3)
b/Å	35.2797(7)
c/Å	23.3317(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90.269(2)
$\gamma^{/ 0}$	90
Volume/ \AA^{3}	16052.3(6)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.350
μ / mm^{-1}	2.647
F(000)	6592.0
Crystal size/mm ${ }^{3}$	$0.152 \times 0.091 \times 0.069$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184 \AA)$
2Θ range for data collection/ ${ }^{\circ}$	4.532 to 148.312
Index ranges	$-23 \leq \mathrm{h} \leq 22,-37 \leq \mathrm{k} \leq 42,-28 \leq 1 \leq 27$
Reflections collected	91104
Independent reflections	$31428\left[\mathrm{R}_{\mathrm{int}}=0.0941, \mathrm{R}_{\text {sigma }}=0.1222\right]$
Data/restraints/parameters	31428/0/2017
Goodness-of-fit on F^{2}	1.008
Final R indexes $[1>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0943, \mathrm{wR}_{2}=0.2450$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1770, \mathrm{wR}_{2}=0.3053$
Largest diff. peak/hole / e \AA^{-3}	0.91/-0.93
CCDC number	1921511

Table S2 Crystal data and structure refinement for compound 6•2TFA.

Identification code	Compound $6 \cdot 2 \mathrm{TFA}$
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClFN}_{4} \mathrm{O}$
Formula weight	303.34
Temperature/K	100.15
Crystal system	triclinic
Space group	$\mathrm{P}-1$
a / \AA	$12.9539(16)$
b / \AA	$14.4757(18)$
c / \AA	$14.7250(18)$
$\alpha /{ }^{\circ}$	$70.698(3)$
$\beta /{ }^{\circ}$	$66.001(3)$
$\gamma /{ }^{\circ}$	$67.022(3)$
Volume $/ \AA \AA^{3}$	$2273.4(5)$
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	$\mathrm{R}_{1}=0.0531, \mathrm{wR}$

Table S3 Crystal data and structure refinement for compound 7.

Identification code	Compound 7
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	898.21
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a / \AA	11.9568(7)
b/A	12.3682(8)
c/ \AA	14.6936(10)
$\alpha /{ }^{\circ}$	109.732(6)
$\beta /{ }^{\circ}$	92.669(5)
γ^{\prime}	92.147(5)
Volume/ \AA^{3}	2039.9(2)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.462
μ / mm^{-1}	2.945
$\mathrm{F}(000)$	924.0
Crystal size/mm ${ }^{3}$	$0.54 \times 0.32 \times 0.31$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184 \AA)$
2Θ range for data collection/ ${ }^{\circ}$	6.404 to 151.78
Index ranges	$-14 \leq \mathrm{h} \leq 14,-15 \leq \mathrm{k} \leq 15,-18 \leq 1 \leq 17$
Reflections collected	18981
Independent reflections	$8001\left[\mathrm{R}_{\text {int }}=0.0835, \mathrm{R}_{\text {sigma }}=0.1040\right]$
Data/restraints/parameters	8001/0/568
Goodness-of-fit on F^{2}	1.085
Final R indexes [$\mathrm{l}>=2 \sigma$ (I$)$]	$\mathrm{R}_{1}=0.0885, \mathrm{wR}_{2}=0.2358$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1232, \mathrm{wR}_{2}=0.2528$
Largest diff. peak/hole / e \AA^{-3}	0.62/-1.11
CCDC number	1921508

Table S4 Crystal data and structure refinement for Compound 8.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma^{\circ} \quad 90$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
$\mu / \mathrm{mm}^{-1} 0.593$
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
CCDC number
0.861

Compound 8
$\mathrm{C}_{72.89} \mathrm{H}_{33.78} \mathrm{ClF}_{8.89} \mathrm{~N}_{3.56} \mathrm{O}_{10.67}$
1298.81
99.97(16)
tetragonal
$\mathrm{I}_{1} / \mathrm{a}$
20.1536(4)
20.1536(4)
55.493(2)

90
90
22539.3(12)

9
5952.0
$0.48 \times 0.39 \times 0.33$
$\mathrm{CuK} \alpha(\lambda=1.54184 \AA)$
6.974 to 152.256
$-25 \leq h \leq 24,-25 \leq k \leq 14,-61 \leq 1 \leq 69$
47049
$11321\left[\mathrm{R}_{\text {int }}=0.0605, \mathrm{R}_{\text {sigma }}=0.0535\right]$
11321/0/488
1.180
$\mathrm{R}_{1}=0.1311, \mathrm{wR}_{2}=0.3318$
$\mathrm{R}_{1}=0.1782, \mathrm{wR}_{2}=0.3889$
1.47/-0.30

1921510

Figure S34. The single crystal X-ray structure of compound 7. Top and side views. The indanedionyl groups are almost in the same plane as the cross-conjugated part of the macrocycle. Thermal ellipsoids are scaled to the 50% probability level.

References:

1. Siddiqui, Z. N.; Khan, T. Tetrahedron Lett. 2013, 54, 3759-3764.
2. Xiao, P.; Dumur, F.; Graff, B.; Morlet-Savary, F.; Vidal, L. Gigmes, D.; Fouassier, J. P.; Lalevee, J. Macromolecules 2014, 47, 23-34.
