Catalytic Carboboration of Dienylboronate for Stereoselective Synthesis of (E)- γ^{\prime}, δ-Bisboryl-anti-Homoallylic Alcohols

Shang Gao and Ming Chen*

Department of Chemistry and Biochemistry

Auburn University

E-mail: mzc0102@auburn.edu

Supporting Information: Experimental Procedures, Tabulated Spectroscopic Data, ${ }^{1} \mathrm{H}$ and
${ }^{13} \mathrm{C}$ Spectra of New Compounds

General Experimental Details. All reaction solvents were purified before use. Tetrahydrofuran, dichloromethane, diethyl ether and toluene were purified by passing through a solvent column composed of activated A-1 alumina. Unless indicated otherwise, all reactions were conducted under an atmosphere of argon using flame-dried or oven-dried $\left(120^{\circ} \mathrm{C}\right)$ glassware. The term "concentrated under reduced pressure" refers to the removal of solvents and other volatile materials using a rotary evaporator with the water bath temperature below $30{ }^{\circ} \mathrm{C}$, followed by removal of residual solvent at high vacuum ($<0.2 \mathrm{mbar}$).

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were acquired on commercial instruments (400 and 600 MHz) at Auburn University NMR facility. Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were acquired at 100 and 151 MHz . The proton signal for residual non-deuterated solvent ($\delta 7.26$ for CHCl_{3}) was used as an internal reference for ${ }^{1} \mathrm{H}$ NMR spectra. For ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are reported relative to the $\delta 77.36$ resonance of CHCl_{3}. Coupling constants are reported in Hz . Optical rotations were measured on a Perkin Elmer 241 Automatic Polarimeter. High-resolution mass spectra were recorded on a commercial high-resolution mass spectrometer via the Micro Mass/Analytical Facility operated by the College of Chemistry and Biochemistry, Auburn University.

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. The TLC plates were visualized with UV light and/or by staining with Hanessian solution (ceric sulfate and ammonium molybdate in aqueous sulfuric acid) or KMnO_{4}. Column chromatography was performed using Kieselgel 60 (230-400 mesh) silica gel, typically using a 50-100:1 weight ratio of silica gel to crude product.

General procedure for the syntheses of TES protected homoallylic alcohols 2: In an Ar-filled glove box, $\mathrm{Cu}(\mathrm{OMe})_{2}(1.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Xantphos ($5.6 \mathrm{mg}, 0.01$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), a Teflon-coated magnetic stir bar, and THF (0.3 mL) were sequentially added to a 1-dram vial. And the mixture was stirred for 15 min at ambient temperature in the glove box. $\mathrm{B}_{2} \mathrm{Pin}_{2}$ ($28 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.1$ equiv) was added and the mixture was stirred for 5 min . Dienylboronate $\mathbf{1}(0.10 \mathrm{mmol}, 1.0$ equiv) and aldehyde ($0.12 \mathrm{mmol}, 1.2$ equiv) were added to the mixture sequentially and the mixture was kept stirring at ambient temperature. After complete consumption of diene 1, imidazole ($0.2 \mathrm{mmol}, 2.0$ equiv) and $\mathrm{TESCl}(0.2 \mathrm{mmol}, 2.0$ equiv) were added to the vial, and the reaction was stirred vigorously for another 4 h at ambient temperature. The resulting mixture was filtered through a pad of silica gel. $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added to the obtained solution, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$. The combined organic extracts were concentrated under reduced pressure. Purification of the crude product was performed by flash chromatography (gradient elution with hexane and ethyl acetate) to give the product 2.

rac-Triethyl(((1S,2S,E)-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxab orolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl) but-3-en-1-yl)oxy)silane (2a) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2a as white solid in 72% yield ($38 \mathrm{mg}, d r>20: 1$). A 1 mmol -scale reaction was also conducted and 2a was isolated in 87% yield (460 mg). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=18.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ $(\mathrm{d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.18(\mathrm{~s}$, $6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.75(\mathrm{dd}, J=15.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.70(\mathrm{dd}, J=$ 15.5, 11.0 Hz, 1H), $0.42-0.52(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0$, 144.1, 127.9, 127.4, 127.2, 83.2, 83.1, 79.5, 50.3, 25.3, 25.04, 24.97, 24.9, 13.1, 7.2, 5.1. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 551.3511, found 551.3522.

rac-(((1S,2S,E)-1-(4-Ethoxyphenyl)-4-(4,4,5,5-tetramethyl-1,3,2-d ioxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)but-3-en-1-yl)oxy)triethylsilane (2b) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2b as white solid in 89% yield ($51 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{dd}, J$ $=18.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}$, $6 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H}), 0.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.69(\mathrm{dd}, J=15.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.66(\mathrm{dd}, J=$ $15.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.37-0.47(\mathrm{~m}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1$, $157.3,136.2,128.5,119.2,113.7,83.2,83.1,79.2,63.5,50.4,25.3,25.04,24.97,24.9$, 15.3, 13.2, 7.2, 5.1. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 595.3773, found 595.3815 .

rac-Triethyl(((1S,2S,E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborola n-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1-(4-(trifluoromethoxy)phenyl) but-3-en-1-yl)oxy)silane (2c)
Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2c as white solid in 70% yield ($43 \mathrm{mg}, d r$ $=16: 1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ (dd, $J=18.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.76(\mathrm{dd}, J=$ $15.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.68(\mathrm{dd}, J=15.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.39-0.53(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.1,148.3,142.8,128.6,120.7(\mathrm{q}, J=257 \mathrm{~Hz}), 120.4,120.0,83.3,83.2$, 78.6, 50.2, 25.3, 25.02, 24.96, 24.9, 13.0, 7.1, 5.0. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 635.3334, found 635.3342.

rac-Methyl-4-((1S,2S,E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaboro lan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methy l)-1-((triethylsilyl)oxy)but-3-en-1-yl)benzoate (2d) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 d}$ as white solid in 72% yield ($42 \mathrm{mg}, d r=12: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{dd}, J$ $=18.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.59$ $-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.76$ (dd, $J=15.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.71(\mathrm{dd}, J=15.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.40-0.50(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,155.9,149.5,129.3,129.0,127.3,120.0,83.3,83.2,78.9$, $52.4,50.2,25.2,25.04,24.98,24.9,13.1, ~ 7.1, ~ 5.0$. HRMS (ESI $\left.{ }^{+}\right): m / z$ for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 609.3566, found 609.3524.

rac-(($(1 S, 2 S, E)$-1-(4-bromophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-di oxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methyl)but-3-en-1-yl)oxy)triethylsilane (2e) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2e as white solid in 72% yield ($44 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=18.0,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.229(\mathrm{~s}, 6 \mathrm{H})$, $1.226(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.74(\mathrm{dd}, J=15.4,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.68(\mathrm{dd}, J=15.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.39-0.49(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 156.2,143.2,131.0,129.0,121.0,83.3,83.2,78.7,50.2,25.3,25.04,24.98$, 24.9, 13.0, 7.2, 5.1. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiBrNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 629.2616, found 629.2617.

rac-(((1S,2S,E)-1-(4-Chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-di oxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methyl)but-3-en-1-yl)oxy)triethylsilane (2f) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 f}$ as white solid in 91% yield ($51 \mathrm{mg}, d r=17: 1$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=18.0,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.229(\mathrm{~s}$, $6 \mathrm{H}), 1.226(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.74(\mathrm{dd}, J=15.4$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.68(\mathrm{dd}, J=15.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.39-0.49(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.2,142.7,132.7,128.7,128.1,83.3,83.1,78.7,50.3,25.3,25.04,24.98$, 24.9, 13.1, 7.2, 5.1. HRMS (ESI $\left.{ }^{+}\right): m / z$ for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 585.3122, found 585.3090.

rac-(((1S,2S,E)-1-(3-Chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-di oxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) methyl)but-3-en-1-yl)oxy)triethylsilane (2g) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 g}$ as white solid in 75% yield ($42 \mathrm{mg}, d r=15: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{dd}, J=18.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=$
$18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.23(\operatorname{app} \mathrm{~s}, 12 \mathrm{H}), 1.17(\mathrm{~s}$, $6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.79(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.70(\mathrm{dd}, J=$ $15.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.42-0.54(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.1,146.2$, 133.8, 129.2, 127.4 (2C), 125.5, 120.0, 83.3, 83.2, 78.7, 50.2, 25.3, 25.04, 24.97, 24.9, 13.0, 7.1, 5.0. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 585.3122, found 585.3122.

rac-Triethyl(((1S,2S,E)-1-(3-methoxyphenyl)-4-(4,4,5,5-tetramet hyl-1,3,2-dioxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxab orolan-2-yl)methyl)but-3-en-1-yl)oxy)silane (2h) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 h}$ as white solid in 82% yield ($46 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=18.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ $(\mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}$, $6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.76(\mathrm{dd}, J=15.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.71(\mathrm{dd}, J=$ $15.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.42-0.50(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,156.9$, $145.8,128.8,119.9,113.2,112.2,83.2,83.1,79.4,55.4,50.2,25.3,25.05,24.98,24.9$, 7.2, 5.1. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 581.3617, found 581.3583 .

rac-(((1S,2S,E)-1-(2-Chlorophenyl)-4-(4,4,5,5-tetramethyl-1,3,2-diox aborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)meth yl)but-3-en-1-yl)oxy)triethylsilane (2i) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 i}$ as colorless oil in 73% yield ($41 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12 (dd, $J=7.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=17.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.66(\mathrm{~m}, 1 \mathrm{H}), 1.22(a p p . \mathrm{s}, 12 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~s}$, $6 \mathrm{H}), 0.95(\mathrm{dd}, J=15.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.71(\mathrm{dd}, J=15.3,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.40-0.51(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.3,142.0,132.4,129.6$, 128.9, 128.3, 126.8, 83.3, 83.1, 74.7, 49.8, 25.3, 25.03, 24.96, 24.9, 13.2, 7.1, 4.9. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiClNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 585.3122, found 585.3110.

rac-Triethyl(($(1 E, 3 S, 4 S, 5 E)-5-m e t h y l-1-(4,4,5,5-t e t r a m e t h y l-1,3,2-d i$ oxaborolan-2-yl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)me thyl)octa-1,5-dien-4-yl)oxy)silane ($\mathbf{2 j}$) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 j}$ as colorless oil in 67% yield ($35 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.58(\mathrm{dd}, J=17.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.22$ $(\mathrm{s}, 6 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 9 \mathrm{H}), 0.72(\mathrm{dd}, J=15.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.62(\mathrm{dd}, J=15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.48-0.52(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,135.6,129.8,118.8,83.6,83.2,83.0,45.8$, $25.3,25.0$ (2C), 24.9, 21.1, 14.3, 13.6, 11.2, 7.3, 5.1. HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 543.3835, found 543.3824.

rac-tert-Butyl-3-((1S,2S,E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-1 -((triethylsilyl)oxy)but-3-en-1-yl)-1H-indole-1-carboxylate
Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $2 \mathbf{k}$ as white solid in 90% yield ($60 \mathrm{mg}, d r>$ 20:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{br}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{br}$, $1 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.17$ (dd, $J=7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=18.0,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}), 1.23$ (s, 6H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 1.15$ (app. s, 12H), $0.90(\mathrm{dd}, J=15.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 9 \mathrm{H}), 0.78(\mathrm{dd}, J=15.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.42-0.53(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.0,150.1,135.8,129.5,124.3,123.9,123.4,122.5,121.3,119.5,115.2,83.6$, 83.3, 83.1, 73.3, 49.1, 28.5, 25.3, 25.1, 25.0, 24.9, 13.3, 7.2, 5.0. HRMS (ESI ${ }^{+}$: m / z for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{~B}_{2} \mathrm{NO}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 690.4145, found 690.4169.

rac-(((1S,2S,E)-1-(Benzo[b]thiophen-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)methyl)but-3-en-1-yl)oxy)triethyl silane (21) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 21 as white solid in 84% yield ($49 \mathrm{mg}, d r=20: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.31$ (m, 2H), $7.08(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=18.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.85-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{dd}, J=15.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.49-0.61(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,149.7,139.9,139.6,124.1,123.9,123.5,122.7$, 120.6, 120.1, 83.3, 83.2, 76.0, 50.4, 25.2, 25.1, 24.95, 24.92, 13.1, 7.2, 5.1. HRMS (ESI ${ }^{+}$: m / z for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiSNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 607.3232, found 607.3215 .

rac-(((1S,2S,E)-1-(2,3-Dihydrobenzofuran-5-yl)-4-(4,4,5,5-tetram ethyl-1,3,2-dioxaborolan-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)methyl)but-3-en-1-yl)oxy)trimethyl silane (2m) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound $\mathbf{2 m}$ as colorless oil in 91% yield ($52 \mathrm{mg}, d r>$ 20:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=18.1,8.2 \mathrm{~Hz}), 5.40(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.231(\mathrm{~s}, 6 \mathrm{H})$, $1.226(\mathrm{~s}, 6 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70(\mathrm{dd}, J=15.4,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 0.65(\mathrm{dd}, J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.38-0.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}) $\delta 159.2,157.4,136.4,127.2,126.5,123.9,119.2,108.3,83.2,83.1,79.5,71.5$, $50.5,30.0,25.3,25.04,24.96,24.9,13.3, ~ 7.2, ~ 5.1$. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{~B}_{2} \mathrm{O}_{6} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 593.3617, found 593.3594.

rac-Triethyl(($3 S, 4 R, E)-1-(4,4,5,5-t e t r a m e t h y l-1,3,2-d i o x a b o r o l a ~$ n-2-yl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)d ec-1-en-4-yl)oxy)silane (2n) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2 n as colorless oil in 73% yield ($39 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.55(\mathrm{dd}, J=18.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, J=5.4,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(a p p \mathrm{tt}, J=8.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.24(a p p . \mathrm{s}, 12 \mathrm{H}), 1.20$ $(\mathrm{s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 0.94-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.83-0.89(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.59$ (app. q, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $156.4,119.3,83.21,83.17,76.3,47.3,34.6,32.2,29.8,26.0,25.2,25.1,25.03,24.99$, 23.0, 14.5, 12.2, 7.4, 5.5. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 559.4137, found 559.4150.

rac-Triethyl(($3 S, 4 R, E)-6-m e t h y l-1-(4,4,5,5-t e t r a m e t h y l-1,3,2-d i o x a ~$ borolan-2-yl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)meth yl)hept-1-en-4-yl)oxy)silane (20) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 20 as colorless oil in 76% yield ($39 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 6.54(\mathrm{dd}, J=18.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=6.5,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.24(\operatorname{app} \mathrm{~s}, 12 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}$, $6 \mathrm{H}), 1.02(\mathrm{dd}, J=15.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.86-0.90(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.2,119.3,83.21,83.18,74.1,47.4,43.8,25.2,25.1$ (2C), 25.0, 24.5, 23.4, 23.1, 12.3, 7.5, 5.5. HRMS (ESI^{+}): m / z for $\mathrm{C}_{27} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 531.3824, found 531.3839.

rac-Triethyl(($(3 S, 4 R, E)$-5-ethyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxab orolan-2-yl)-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)hept-1-en-4-yl)oxy)silane (2p) Prepared according to the general procedure. The crude mixture was purified by flash column chromatography to give compound 2p as colorless oil in 84% yield ($44 \mathrm{mg}, d r>20: 1$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.61(\mathrm{dd}, J=18.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.60(\mathrm{~m}, 1 \mathrm{H})$, $2.52-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.234(\mathrm{~s}, 6 \mathrm{H}), 1.225(\mathrm{~s}, 6 \mathrm{H}), 1.194(\mathrm{~s}, 6 \mathrm{H}), 1.189$ $(\mathrm{s}, 6 \mathrm{H}), 1.19-1.35(\mathrm{~m}, 4 \mathrm{H}), 0.91-0.94(\mathrm{~m}, 10 \mathrm{H}), 0.80-0.86(\mathrm{~m}, 7 \mathrm{H}), 0.58(\mathrm{q}, J=8.0$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,83.3,83.1,78.2,45.9,45.6,25.3$, $25.1(2 \mathrm{C}), 24.9,22.8,21.9,14.5,12.5,12.3,7.6,5.8 . \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{~B}_{2} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 545.3990, found 545.3981.

rac-(((1S,2S,E)-1,4-Diphenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl) but-3-en-1-yl)oxy)triethylsilane (SI-1) In an Ar-filled glove box, vinylboronate 2a (79 $\mathrm{mg}, \quad 0.15 \mathrm{mmol}, 1.0$ equiv), iodobenzene $(41 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.3$ equiv), $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{mg}, 0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(84 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.6$ equiv), THF (0.9 mL), $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and a Teflon-coated magnetic stirring bar were sequentially added into a 1-dram vial. The vial was sealed with a cap containing a PTFE-lined silicone septum and removed from glove box. The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After complete consumption of boronate 2a, $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the resulting mixture was filtered through a short pad of silica gel. The solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography to give compound SI-1 in 85% yield (61 mg)
as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.29(\mathrm{~m}, 10 \mathrm{H}), 6.27(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17(\mathrm{dd}, J=16.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.160$ (s, 6 H), 1.158 (s, 6H), $0.98(\mathrm{dd}, J=15.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.82-$ $0.90(\mathrm{~m}, 1 \mathrm{H}), 0.44-0.52(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,138.4,132.9$, 130.7, 128.7, 127.9, 127.3, 127.2, 126.9, 126.4, 83.3, 79.7, 47.8, 25.4, 25.0, 7.1, 5.2. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BO}_{3} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 501.2972, found 501.3006.

rac-($\boldsymbol{R}, \boldsymbol{E})$-4-Phenyl-2-((\boldsymbol{S})-phenyl((triethylsilyl)oxy)methyl)but-3-en-1-ol (SI-2) To a solution of compound $4(59 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added $3 \mathrm{~N} \mathrm{NaOH}(1.0$ $\mathrm{mL})$, followed by slow addition of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.5 \mathrm{~mL})$. The reaction was stirred vigorously at ambient temperature for 12 h . Then brine (2 mL) and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ were added to the reaction mixture, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic phase was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography to give compound SI-2 in 91\% yield (41 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.32(\mathrm{~m}, 10 \mathrm{H}), 6.39$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.95 (dd, $J=15.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J$ $=10.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{br}, 1 \mathrm{H})$, $0.87(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.48-0.57(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2$, 137.4, 133.6, 128.8, 128.2, 127.7 (2C), 127.08, 127.05, 126.5, 77.5, 64.0, 53.4, 7.1, 4.9. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 391.2069, found 391.2053.

rac-(1S,2R)-1-Phenyl-2-((E)-styryl)propane-1,3-diol (SI-3) To a solution of compound SI-2 ($40 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (2 mL) was added TBAF $\cdot \mathrm{H}_{2} \mathrm{O}(46 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) and water (0.1 mL). The reaction mixture was stirred at ambient temperature for 3 h. EtOAc (2 mL) were added to the reaction mixture and filtered through a pad of silica gel. The obtained solution was concentrated under reduced pressure. Purification of the crude product was performed by flash chromatography (gradient elution with hexane and
ethyl acetate) afforded diol SI-3 in 85% yield $(23.5 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=16.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=$ $10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=10.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 1 \mathrm{H}), 1.91$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 142.3,137.0,134.9,128.9,128.7,128.1,128.0$, 126.8, 126.6, 126.5, 75.9, 64.5, 53.1. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 277.1204, found 277.1187.

rac-(4S,5R)-2,2-Dimethyl-4-phenyl-5-((E)-styryl)-1,3-dioxane (SI-4) To a solution of diol SI-3 ($21 \mathrm{mg}, 0.083 \mathrm{mmol}$) in 2, 2-dimethoxypropane (1 mL) was added p PTS (2 mg) and acetone $(0.2 \mathrm{~mL})$. The reaction mixture was stirred at ambient temperature for 48 h . After complete consumption of the diol intermediate, the reaction mixture was filtered through a pad of silica gel and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give acetonide SI-4 in 70\% yield (17 mg) as a colorless oil. The small J value is consistent with the syn stereochemistry in compound SI-4. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.31(\mathrm{~m}, 10 \mathrm{H}), 6.50(\mathrm{dd}, J=16.1$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=11.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 140.7,137.9,132.4,128.6,128.3,127.44,127.39,127.2$, 126.4, 126.2, 99.7, 74.0, 66.1, 44.4, 30.1, 19.3. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}$ [M$+\mathrm{Na}]^{+}$calcd. 317.1519, found 317.1517.

(\boldsymbol{E})-1,4-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-ene (4): In an Ar-filled glove box, $\mathrm{Cu}(\mathrm{OMe})_{2}(2.5 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, Xantphos $(12 \mathrm{mg}, 0.02 \mathrm{mmol}, 10$ $\mathrm{mol} \%)$, THF (0.5 mL) and a Teflon-coated magnetic stirring bar were sequentially added
into a 1-dram vial. The mixture was stirred for 15 min in glove box and $\mathrm{B}_{2} \mathrm{Pin}_{2}(56 \mathrm{mg}$, $0.22 \mathrm{mmol}, 1.1$ equiv) was added. After stirring for 5 min , dienylboronate $1(0.20 \mathrm{mmol}$, 1.0 equiv) and methanol ($0.20 \mathrm{mmol}, 1.0$ equiv) were added sequentially, and the reaction mixture was stirred at ambient temperature for 10 min . After complete consumption of boronate 1, the reaction mixture was filtered through a pad of silica gel and the solution was concentrated under reduced pressure. The Z / E ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl ether) to give product 4 as a white solid ($50 \mathrm{mg}, E / Z>20: 1,81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.39-5.45(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (app. s, 4H), $1.23(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 125.6, 83.4, 25.1, 16.5. HRMS (ESI $)$: m / z for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~B}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 309.2413, found 309.2408.

rac-Triethyl(((1S,2S,E)-4-iodo-1-phenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 -yl)methyl)but-3-en-1-yl)oxy)silane (6) To a solution of boronate 2a ($26.4 \mathrm{mg}, 0.05$ mmol) in THF (0.5 mL) was added an aqueous solution of $3 \mathrm{~N} \mathrm{NaOH}(35 \mu \mathrm{~L}, 2.0$ equiv). The reaction mixture was stirred for 10 min at ambient temperature. Then a solution of I_{2} $(25 \mathrm{mg}, 0.1 \mathrm{mmol}, 2.0$ equiv) in THF (0.5 mL) was added. The reaction mixture was stirred for 1 h at ambient temperature and a saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (3 mL) was added to the mixture. After stirring for 15 min , the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with saturated NaHCO_{3} and brine, dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and $\mathrm{Et}_{2} \mathrm{O}$) to give product 6 in 67% yield (17.7 mg). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.30(\mathrm{~m}$, $5 \mathrm{H}), 6.49(\mathrm{dd}, J=14.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.80-0.82(\mathrm{~m}$, $2 \mathrm{H}), 0.44-0.54(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3,143.8,128.0,127.4$, 127.1, 83.5, 78.9, 76.4, 51.3, 25.5, 25.0, 13.5, 7.2, 5.1. HRMS (ESI ${ }^{+}$) m / z for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BO}_{3} \mathrm{SiINa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 551.1626, found 551.1581.

rac-(((1S,2S,Z)-4-Bromo-1-phenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)m ethyl)but-3-en-1-yl)oxy)triethylsilane (7) To a solution of boronate 2a ($53 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was added a solution of Br_{2} in dichloromethane ($1 \mathrm{~N}, 0.09 \mathrm{mmol}$, 0.9 equiv) over 2 min at $-78^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 10 min , the solution was warmed to $-20^{\circ} \mathrm{C}$ and kept stirring for 20 min . Then the reaction was cooled to $-78^{\circ} \mathrm{C}$, a solution of 3.0 M sodium methoxide in methanol (2.2 equiv) was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added next and the reaction was allowed to warm to ambient temperature. The reaction mixture was filtered through a pad of silica gel and the solution was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and $\mathrm{Et}_{2} \mathrm{O}$) to give product 7 in 75% yield (36 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=9.5,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddt}, J=9.4,9.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 1.06$ (dd, $J=15.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.77(\mathrm{dd}, J=15.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.45-0.56$ $(\mathrm{m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.6,136.7,127.8,127.2,127.0,108.3,83.5$, $77.9,44.9,25.2,25.1,13.2,7.2,5.1$. HRMS (ESI^{+}): m / z for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BBrO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ calcd. 503.1755, found 503.1764.

rac-(((1S,2S,E)-4-(Allyloxy)-1-phenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)but-3-en-1-yl)oxy)triethylsilane (8) To an oven-dried 1-dram vial equipped with a Teflon-coated magnetic stirring bar was added vinyl boronic ester 2a (26.4 mg , $0.05 \mathrm{mmol}, 1.0$ equiv), copper (II) acetate ($27 \mathrm{mg}, 0.15 \mathrm{mmol}, 3.0$ equiv), triethylamine ($14 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 2.0$ equiv), allyl alcohol $(200 \mu \mathrm{~L})$ and . The vial was sealed with a cap containing a PTFE-lined silicone septum and the reaction mixture was stirred for 12 h at $60{ }^{\circ} \mathrm{C}$. Then $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added to the vial and the reaction mixture was filtered through a pad of silica gel. The solution was concentrated under reduced pressure.

Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product $\mathbf{8}$ in 82% yield (18.8 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 1 \mathrm{H})$, 6.07 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90$ (ddt, $J=17.1,10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=12.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{dd}, J=15.1,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 0.84(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.78(\mathrm{dd}, J=15.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.42-0.52(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 146.5,144.3,134.0,127.7,127.2,127.0,117.6,105.7$, 83.2, 79.7, 69.8, 43.6, 25.4, 25.1, 7.2, 5.1. HRMS (EI $)$: m / z for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}]^{+}$calcd. 458.3024, found 458.3039 .

rac-Ethyl-(2E,4E,6S,7S)-7-phenyl-6-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)m ethyl)-7-((triethylsilyl)oxy)hepta-2,4-dienoate (10) To a solution of ethyl acrylate (16 $\mu \mathrm{L}, 0.15 \mathrm{mmol}$, 3.0 equiv) in N, N-dimethylacetamide (0.25 mL) was added vinyl boronic ester 2a ($26.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%)$. The reaction flask was fitted with an oxygen balloon and the reaction mixture was stirred for 6 h at $55^{\circ} \mathrm{C}$. Then ethyl acetate $(20 \mathrm{~mL})$ was added to the reaction flask, and the resulting solution was washed with water $(2 \times 10 \mathrm{~mL})$. The separated organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated under reduced pressure. Purification of the crude product was performed by flash column chromatography (gradient elution with hexane and ethyl acetate) to give product $\mathbf{1 0} \mathbf{i n ~} 81 \%$ yield (20.3 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.28(\mathrm{~m}, 6 \mathrm{H})$, $6.14(\mathrm{dd}, J=15.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=15.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.62-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{dd}, J=15.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $9 \mathrm{H}), 0.80(\mathrm{dd}, J=15.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.48(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,146.5,145.6,143.9,129.3,128.0,127.4,127.0,119.4,83.4,79.2,60.6$, 48.0, 25.4, 25.0, 14.6, 14.1, 7.1, 5.1. HRMS (ESI ${ }^{+}$): m / z for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{BO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 501.3205, found 501.3208.

rac-Ethyl-(2Z,4E,6R,7S)-6-(hydroxymethyl)-7-phenyl-7-((triethylsilyl)oxy)hepta-2,4dienoate (12) In an Ar-filled glove box, $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{mg}, 10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ ($28 \mathrm{mg}, 0.13 \mathrm{mmol}, 2.6$ equiv), THF (0.45 mL), vinylboronate 2a $(26.4 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1.0 equiv), and a Teflon-coated magnetic stirring bar were sequentially added into a 1-dram vial. Then vinyl iodide 11 ($15 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.3$ equiv) and $50 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ were added to the mixture. The vial was sealed with a cap containing a PTFE-lined silicone septum and removed from glove box. The reaction was kept stirring at $70{ }^{\circ} \mathrm{C}$ for 12 h . After complete consumption of boronate $\mathbf{2 a}, \mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the resulting mixture was filtered through a short pad of Celite. Brine $(5 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ were added to the filtrate, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic extracts were concentrated under reduced pressure. The crude product was dissolved in THF (1.0 mL); $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(15 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 2.0$ equiv) and 0.5 mL water were added to the solution. The reaction mixture was stirred at ambient temperature for 4 h . Then $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were added, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$. The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. Purification of the crude product was performed by flash chromatography to provide product 12 in 67% yield (13 mg) as colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{dd}, J=15.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.26$ (m, 3H), 6.50 (app. t, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=15.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{dd}, J=10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{br}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.45-0.55(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.7, $144.8,142.1,141.4,129.9,128.3,127.8,126.9,117.1,76.8,63.7,60.3,53.2,14.6,7.1$, 4.9. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}$calcd. 413.2124, found 413.2091.

$\left(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\right)$

SI-36

