An improvement in scanning electrochemical microscopy based

on plasmon-accelerated electrochemical reaction

Yun-Lu Zhou, [‡] Panke Zhang, [‡] Cong-Hui Xu,* Jing-Juan Xu* and Hong-Yuan Chen

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

These authors contributed equally.*Corresponding authors. Tel/fax: +86-25-89687294. E-mail: chxu@nju.edu.cn, xujj@nju.edu.cn

Table of contents

1. Experimental Section

- Chemicals
- Apparatus
- Fabrication and characterization of gold nanoparticles microelectrodes
- Finite-difference time-domain simulation
- 2. Characterization of AuNPs deposited carbon UME
- 3. UV-vis absorption of electrodeposited AuNPs
- 4. PAER on AuNPs modified GC with different species
- 5. Approach curve with tip touching the substrate
- 6. FDTD model
- 7. Reference

1. Experimental Section

Chemicals and reagents. Hydroxymethylferrocene (C₁₁H₁₂FeO,>95%), sodium dihydrogen phosphate dohydrate (NaH₂PO₄•2H₂O, \geq 99.0%), disodium hydrogen phosphate-odecahydrate (Na₂HPO₄•12H₂O, \geq 99.0%), potassium ferrocynanide trihydrate (K₄Fe(CN)₆, \geq 99.5%), tripropylamine(>99%), auricchloridedihydrate (HAuCl₄ Au \geq 47.8%) were purchased from Sigma-Aldrich. All aqueous solutions were prepared with doubly distilled water produced by a Milli-Q (resistivity of 18.2 MΩ cm) system.

Apparatus. The capillary was pulled by P-2000 (Sutter Instrument Co). JSM-7800F scanning electron microscope (JEOL Ltd., Japan) was applied to characterize the UME tip. A CHI 750C bipotentiostat (CH Instruments, Shanghai, China) was used for electrodeposition of AuNPs and test the chemical properties of UME tip with a three electrodes setup, where Ag/AgCl and Pt electrodes were used as the reference and counter electrodes, respectively. The laser was purchased from Changchun New Industries Optoelectronics Tech. Co., Ltd(MGL-FN-532nm-300mW-17100294). The current of the laser can been read directly. But the power should be calculated from the P-I curve provided by the company.

All feedback curves were measured by a homemade SECM setup. The homemade SECM instrument comprises a signal acquisition system (multiclamp 700B from Molecular Devices, LLC), an E518 piezoelectric micro-positioning device (with a minimum step size of 0.1nm) and a C884 mechanical micro-positioning device (with a minimum step size of 50nm) as shown in Figure S6. The two micro-positioning devices were purchased from Physik Instrument (PI) GmbH & Co. KG. The signal acquisition system was operated by a LabView program to control the voltage between the two electrodes as well as record the tip current simultaneously. The position of the tip could be controlled in a programmed mode according to the recorded current as a function of the tip-substrate distance. A Faraday cage was used to protect the equipment from external radio frequency interference during testing. A two-electrode system was used where Ag/AgCl acts as the counter electrode. The Faraday cage and the laser were put on a vibration prevention platform. A plane mirror was set 45° to the table in order to ensure the vertical illumination of the probe.

Fabrication and characterization of gold nanoparticles microelectrodes. Glass capillaries (1.5

mm outside diameter, 0.5 mm inside diameter) were obtained from Sutter Instrument Company (USA). The quartz capillary was pulled using a double row parameters (Heat=710, Fil=4, Vel=35, Del=115, Pul=50; Heat=710, Fil=4, Vel=35, Del=115, Pul=50). Pyrolysis of butane under argon atmosphere was used to fill the quartz capillary with solid carbon ^[1]. Then the electrode was modified with AuNPs by electrodeposition in 1.0 mM HAuCl₄ solution (-0.3 V, 400 s).

Finite-difference time-domain simulation. Three-dimensional full-field finite-difference time domain (FDTD) (the package of Lumerical FDTD Solutions 8.15) was used to simulate the EM field variation with the nanoparticle-substrate distance. The model was designed with one AuNP (50 nm diameter) and SiO₂ substrate (100μ m× 100μ m×200nm) underneath the particle with distance from 500 to 2000 nm. Light (*x*-polarized) source ranging from 400 to 600 nm was introduced from *z*-direction. An x-y mesh plane was applied to the model which is always tangent to the gold sphere. When the simulation runs over, we recorded the electric field on the x=0, y=0 under 532nm excitation.

0.5 0.0 Current/1e-9A -0.5 -1.0 -1.5 -2.0 -2.5 500mM H_aSO -3.0 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Potential/V

2. Characterization of AuNPs deposited carbon UME

Fig.S1 CV of AuNPs deposited carbon UME in 0.5 M H_2SO_4 . The stripping peak of gold indicated the formation of Au on the carbon UME.

Fig. S2 CV scans for carbon UME after AuNPs deposition in $K_4Fe(CN)_6$ solution with concentration of 0.031 M, 0.062 M, 0.12 M, 0.25 M and 0.50 M.

3. UV-vis absorption of electrodeposited AuNPs

Fig.S3 UV-vis spectrum of AuNPs modified ITO electrodes after electrochemical deposition in 1.0 mM HAuCl₄ solution at -0.3 V vs. SCE for 400 s.

4. PAER on AuNPs modified GC with different species

Fig.S4 CV scans with (red) and without illumination (black) at room temperature, and at 40 °C (blue) in 0.2 M pH 7.4 PBS containing (A) $0.1M \text{ K}_4\text{Fe}(\text{CN})_{6}$ (B) saturated ferrocene, (C) 5 mM tripropylamine (scan rate: 100 mV/s). The intensity of the 532 nm laser is 498 mW/cm².

5. Approach curve with tip touching the substrate

Fig.S5 SECM tip currents vs tip distances (approach curve) obtained in 5 mM tripropylamine ($E_T = 1.0 \text{ V vs Ag/AgCl}$). The intensity of the 532 nm laser is 498 mW/cm².

6. FDTD model

Fig.S6 (A) *x-y* plane, (B) *y-z* plane, (C) *x-z* plane, and (D) the perspective view of the simulation model.

7. Reference

[1] Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson, P. R. Unwin, A. J. Pollard, D. Roy, C. A. Clifford, H. Shiku, T. Matsue, D. Klenerman and Y. E. Korchev, *Angew. Chem. Int. Ed.*, 2011, **50**, 9638.