Supporting Information for

Cobalt Doped β-Molybdenum Carbide Nanoparticles Encapsulated within Nitrogen-Doped Carbon for Oxygen Evolution

Xinyang Zhu^{a,b}, Xueping Zhang^{a,c}, Liang Huang^{a,b}, Yongqin Liu^a, He Zhang^{a,b} and Shaojun Dong^{*,a,b}

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China ^bUniversity of Science and Technology of China, Hefei, Anhui 230026, P. R. China

E-mail: dongsj@ciac.ac.cn.

Experimental section

Materials

Zinc nitrate hexahydrate $(Zn(NO)_2 \cdot 6H_2O)$ and cobalt nitrate hexahydrate $(Co(NO)_2 \cdot 6H_2O)$ were purchased from Xilong Chemical Engineering Co.. 2methylimidazole was obtained from Aladdin Industrial Co.. Bis(acetylacetonato)dioxomolybdenum (VI) $(MoO_2(acac)_2)$ was bought from Meryer Chemical Technology Co., Ltd.. Methanol and N, N-dimethylformamide (DMF) were purchased from Beijing Chemical Co.. Nafion (5.0 wt%) was purchased from Sigma-Aldrich. In the experiment, all chemical agents were used as received without further purification.

Synthesis of Co_n-β-Mo₂C@NC

Synthesis of ZIF ZIF-8 was synthesized following the method previously reported¹. Three samples with different Co/Zn mole ratios (Co/Zn=0.2, 0.1 and 0.05) were prepared, dubbed as 0.2-ZIF, 0.1-ZIF and 0.05-ZIF, respectively. Typically, 1.68 g Zn(NO₃)₂·6H₂O were dissolved in 40 mL methanol with 0.32 g, 0.16 g and 0.08 g Co(NO₃)₂·6H₂O at room temperature, respectively. 3.7 g 2-methylimidazole were dissolved in 40 mL methanol at room temperature, respectively. Then the mixture solution of Zn(NO₃)₂·6H₂O and Co(NO₃)₂·6H₂O was poured into methanol solution of 2-methylimidazole under vigorous stirring for 24 h, respectively. The reaction products were collected through centrifugation, and washed by methanol for three times, then dried at 60 °C for 12 h. Morphology of the ZIFs was shown in the Fig.S1.

Synthesis of Co_n - β - $Mo_2C@NC$ Firstly, 0.02 g MoO₂(acac)₂ were dissolved in 200 μ L DMF, respectively. Afterwards, 80 mg 0.2-ZIF, 0.1-ZIF and 0.05-ZIF were obtained, keeping in three 5 mL volume centrifuge tubes. DMF solution of MoO₂(acac)₂ was dropped into the three centrifuge tubes, respectively, then the mixtures were vibrated with mixer for 5 minutes. After that, mixtures were put into vacuum drying oven at 60 °C for 12 h. Subsequently, dried products were ground to fine powder and put into porcelain boats, which were then calcinated at 900 °C for 3 h with a heating rate of 3 °C min⁻¹ in N₂ atmosphere. The samples as-obtained were

dubbed as Co_n - β -Mo₂C@NC.

Characterization

X-ray diffraction (XRD) data were obtained from a D8 ADVANCE (Bruker, Germany) X-ray diffractometer with Cu K α radiation (λ =1.5406 Å). Scanning electron microscopy (SEM) measurements were carried out on a PHILIPS XL-30 field-emission scanning electron microscope with an accelerating voltage of 10 kV. Transmission electron microscopy (TEM) experiments were performed on a TECNAI F20 field-emission transmission electron microscope with an accelerating voltage of 200 kV. X-ray photoelectron spectra (XPS) were acquired on an ESCALAB-MKII X-ray photoelectron spectra with an excitation source of Al K α radiation. Raman spectra were recorded on a LabRAM HR800 confocal Raman microscope (Horiba Jobin Yvon) with a laser excitation of 633 nm and power of 5 %. Nitrogen adsorption/desorption analysis was performed at 77.15 K on the AutosorbStation1 (Quantachrome, USA). Before measurement, the samples were degassed at 150 °C under vacuum for 12 h.

Electrochemical measurements

The OER measurements were performed in a three-electrodes system on a CHI832c electrochemical workstation with a Model RRDE-3A Apparatus (BAS Japan) at room temperature. A Pt wire and Ag/AgCl (saturated KCl) electrodes were used as counter electrode and reference electrode, respectively. To prepare working electrode, 2 mg sample was dissolved 1 mL in ethanol containing 0.12 wt.% Nafion solution under sonication. After that, 18 µL of the mixture was dropped onto the glassy carbon of RDE with a diameter of 4 mm, then left it dry in air. The catalyst loading amount was about 0.28 mg/cm² on the working electrode surface. Linear sweep voltammetry (LSV) experiments were performed at a scan rate of 5 mV/s and a rotating speed of 1600 rpm with a correction of 95% iR-compensation in 1.0 M KOH solution which was purged with O₂ for 15 minutes. The potential measured versus Ag/AgCl (saturated KCl) electrode was converted to versus reversible hydrogen electrode (RHE) according to $E_{vs.RHE} = E_{vs.Ag/AgCl} + E_{Ag/AgCl} + 0.0592pH_2$. The overpotential (η) of the reaction can be obtained according to $\eta = E_{vs.RHE} - 1.23 V$. Current density (J) was normalized to the

geometrical area of RDE. Electrochemical impendence spectroscopy (EIS) measurements were performed at an overpotential of 600 mV vs. RHE from 1 MHz to 0.1 Hz with an amplitude of 5 mV.

Figure. S1 Scanning electron microscopy (SEM) images of bimetallic ZIFs with different Zn/Co mole ratios, (a) 5:1, (b) 10:1, (c) 20:1.

Figure. S2 Scanning electron microscopy (SEM) image of $Co_{0.1}$ - β -Mo₂C@NC.

Figure. S3 Low magnification TEM image of $Co_{0.1}$ - β -Mo₂C@NC.

Figure. S4 XPS survey spectrum of $Co_{0.1}$ - β -Mo₂C@NC.

Figure. S5 XPS spectra of $Co_{0.1}$ - β -Mo₂C@NC, (a) Co, (b) N, (c) Mo and (d) C.

Figure. S6 Cyclic voltammograms of (a) $Co_{0.2}$ - β -Mo₂C@NC, (b) $Co_{0.1}$ - β -

Mo₂C@NC, (c) Co_{0.05}- β -Mo₂C@NC with various scan rates in 1.0 M

KOH.

Figure. S7 The specific OER activity calculated by normalizing the current based on the corresponding ECSA of Co_n - β -Mo₂C@NC in 1 M KOH.

Figure. S8 I-t plot of $Co_{0.1}$ - β -Mo₂C@NC at a controlled potential of 1.49

V.

Figure. S9 LSV curves of $Co_{0.1}$ (a)NC after iR-compensation in 1 M KOH aqueous solution at a scan rate of 5 mV/s and a rotating speed of 1600

rpm.

Figure. S10 I-t plot of $Co_{0.1}$ @NC (without β -Mo₂C) at a controlled potential of 1.65 V.

As a comparation, the OER performance of the sample without β -Mo₂C (dubbed as Co_{0.1}@NC) was tested in the same condition, shown in Figure S9, revealing an OER overpotential (η_{10}) of 420 mV. Co_{0.1}@NC was tested for its long-term stability at 1.65 V, aiming to prove the stability brought by the existence of β -Mo₂C. As shown in Figure S10, after mere 3.6 h chronoamperometry test, the current value dropped to 87% of the initial current accompanied with a continuous decline trend, demonstrating the contribution of β -Mo₂C towards the long-term stability of the electrocatalyst.

Figure. S11 XPS spectrum of $Co_{0.1}$ - β -Mo₂C@NC after OER test, (a) Co and (b) Mo.

Furthermore, the XPS measurement was utilized to observe the variation of the $Co_{0.1}$ - β -Mo₂C@NC after stability test. The peaks of Co-N and Co did not change in Co XPS spectrum, revealing the stability of the catalyst during the OER process (Figure S11 a)³. The Mo peaks of the catalyst demonstrated a phenomena of higher binding energy compared to that before test. There have been similar reports before, but the mechanism is still unknown^{3, 4}, as shown in Figure S11b and Table S3.

Figure. S12 TEM image of the $Co_{0.1}$ - β -Mo₂C@NC after I-t test.

Table S1. Cobalt element contents (wt%) of different samples analyzed

Sample	Co/ICP (wt%)	Mo/ICP (wt%)
$Co_{0.2}$ - β - $Mo_2C@NC$	3.91	10.89
Co _{0.1} -β-Mo ₂ C@NC	2.59	10.61
Co _{0.05} -β-Mo ₂ C@NC	1.59	10.54

by ICP-AES.

Calcination step under N₂ atmosphere ensured the formation of β -Mo₂C nanoparticles, which is the effectively catalytical key factor and the complete carbonization of the carbon matrix. Moreover, cobalt content of these samples analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) were 3.91 wt%, 2.59 wt% and 1.59 wt%, respectively (Table S1), which indicated very low cobalt contents in materials, consisting with the XRD analysis and the theme of doping. While the exact content of Mo₂C were 5.45 wt%, 5.31 wt% and 5.27 wt%, according to ICP-AES results of Mo in these samples (10.89 wt%, 10.61 wt% and 10.54 wt%).

Electrocatalyst	Support	η at 10	Electrolyte	Reference
		mA/cm ²		
		(mV)		
Co _{0.1} -β-Mo ₂ C@NC	Glassy	262.2	1.0 M	This work
	carbon		КОН	
Co-Mo ₂ C NPs	Glassy	347	0.1 M	5
	carbon		КОН	
Co-Mo ₂ C@NCNT	Glassy	377	1.0 M	6
	carbon		КОН	
Ni/Mo ₂ C-NCNFs	Glassy	288	1.0 M	7
	carbon		КОН	
Ni/Mo ₂ C-PC	Glassy	368	1.0 M	8
	carbon		КОН	
Co-NC@Mo ₂ C	Glassy	347	1.0 M	9
	carbon		КОН	
Co/β-Mo ₂ C@N-	Glassy	246	1.0 M	3
CNTs	carbon		КОН	
NiCo/Fe ₃ O ₄ /MOF-	Glassy	238	1.0 M	10
74	carbon		КОН	
Co ₃ O ₄ nanosheets	Ti foil	300	0.1 M	11
			КОН	

Table S2. Comparison of OER activity of various electrocatalysts.

CoNi(OH) x	Cu foil	280	1.0 M	12
nanotubes			КОН	
NiCoFeB	Glassy	284	1.0 M	13
nanochains	carbon		КОН	

Table S3. Comparison of the High-resolution Mo 3d XPS spectra of

Sample	Мо				
		Binding	Area	Percentage	
		Energy (eV)		(%)	
Co _{0.1} -β-	$Mo^{\delta^+} 3d_{5/2}$	227.90	914.58	16.37	
Mo ₂ C@NC	$Mo^{4+} 3d_{5/2}$	229.70	426.51	7.63	
before OER	$Mo^{\delta^+} 3d_{3/2}$	231.20	790.74	14.15	
	$Mo^{4+} 3d_{3/2}$	231.90	1155.53	20.68	
	$Mo^{6+} 3d_{5/2}$	232.30	686.34	12.28	
	$Mo^{6+} 3d_{3/2}$	234.95	1613.93	28.88	
	$Mo^{\delta^+} 3d_{5/2}$	228.50	1174.91	9.84	
	Mo ⁴⁺ 3d _{3/2}	229.50	1028.70	8.62	
Co _{0.1} -β-	$Mo^{\delta^+} 3d_{5/2}$	231.65	2360.03	19.77	
Mo ₂ C@NC	Mo ⁴⁺ 3d _{3/2}	232.35	2267.34	18.99	
after OER	Mo ⁶⁺ 3d _{5/2}	232.95	1342.18	11.24	
	$Mo^{6+} 3d_{3/2}$	235.70	3763.86	31.53	

 $Co_{0.1}$ - β -Mo₂C@NC before and after cyclic test.

Reference:

- 1. Y. Z. Chen, C. Wang, Z. Y. Wu, Y. Xiong, Q. Xu, S. H. Yu and H. L. Jiang, *Adv. Mater.*, 2015, **27**, 5010-5016.
- 2. L. Huang, X. Zhang, Q. Wang, Y. Han, Y. Fang and S. Dong, *J. Am. Chem. Soc.*, 2018, **140**, 1142-1147.
- 3. T. Ouyang, Y. Q. Ye, C. Y. Wu, K. Xiao and Z. Q. Liu, *Angew. Chem., Int. Ed.*, 2019, **58**, 4923-4928.
- 4. J. Wang, F. Xu, H. Jin, Y. Chen and Y. Wang, *Adv. Mater.*, 2017, 29, 1605838.
- 5. M. Kim, S. Kim, D. Song, S. Oh, K. J. Chang and E. Cho, *Appl. Catal.*, *B*, 2018, **227**, 340-348.
- 6. L. Ai, J. Su, M. Wang and J. Jiang, *ACS Sustainable Chem. Eng.*, 2018, **6**, 9912-9920.
- M. X. Li, Y. Zhu, H. Y. Wang, C. Wang, N. Pinna and X. F. Lu, *Adv. Energy Mater.*, 2019, 9, 1803185.
- 8. Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng and S. H. Yu, *Chem. Sci.*, 2017, **8**, 968-973.
- Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He and S. Mu, Nano Energy, 2019, 57, 746-752.
- X. Wang, H. Xiao, A. Li, Z. Li, S. Liu, Q. Zhang, Y. Gong, L. Zheng, Y. Zhu,
 C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li and Y. Li, *J. Am. Chem. Soc.*, 2018, 140, 15336-15341.
- 11. L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang and L. Dai, *Angew. Chem.*, *Int. Ed.*, 2016, **55**, 5277-5281.
- 12. S. W. Li, Y. C. Wang, S. J. Peng, L. J. Zhang, A. M. Al-Enizi, H. Zhang, X. H. Sun and G. F. Zheng, *Adv. Energy Mater.*, 2016, **6**, 1501661.
- 13. Y. Li, B. Huang, Y. Sun, M. Luo, Y. Yang, Y. Qin, L. Wang, C. Li, F. Lv, W. Zhang and S. Guo, *Small*, 2019, **15**, 1804212.