Electronic Supplementary Information

DABCO-mediated [3+3] cycloaddition of azomethine imines with in

situ generated nitrile oxides from hydroximoyl chlorides

Qing-Yun Fang, ^{‡a} Hai-Shan Jin, ^{‡a} Ru-Bing Wang, ^{*b} and Li-Ming Zhao^{*ab}

^a School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116,

Jiangsu, China

^b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of

Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,

Beijing 100050, China

Table of Contents

1. General methods	S2
2. General procedure for the synthesis of product 3 and characterization data	S2-S11
3. Procedure for the synthesis of compound 4 and characterization data	S11
4. Copies of ¹ H and ¹³ C NMR spectra for product 3	S13-S39
5. Copies of ¹ H and ¹³ C NMR spectra for compound 4	S40
6. Crystal structure of compound 31	S41-S42

General methods Solvents were treated prior to use according to the standard methods. Other reagents were used as purchased without further purification. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel plates. Chromatographic purification was performed on silica gel columns (200-300 mesh size). Melting points were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz in CDCl₃ with chemical shift (δ) given in ppm relative to TMS as internal standard. Multiplicities were indicated, s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), etc; coupling constant (*J*) were given in Hertz (Hz). High resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) and time-of-flight (TOF) mass analysis. The azomethine imines **1** and hydroximoyl chlorides **2** were prepared following the literature procedures.^{1,2}

General procedure for the synthesis of product 3. To a solution of hydroximoyl chloride 2 (0.1 mmol) in chloroform (2.0 mL) was added DABCO (0.3 mmol) and azomethine imines 1 (0.15 mmol). The reaction mixture was stirred at 50 °C for 10 h. Upon completion of the reaction, water (5 mL) was added and the mixture was extracted with DCM (3×5 mL). The combined organic layers were dried and concentrated under reduced pressure followed by silica gel column chromatography purification (petroleum ether/ethyl acetate = 5:1-3:1) to a ord the product 3.

1,4-Diphenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d] [1,2,4,5] oxatriazin-6-one (**3a**). White solid (20 mg, 68% yield); mp 164-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.56-7.53 (m, 2H), 7.52-7.44 (m, 4H), 7.46-7.41 (m, 2H), 5.04 (s, 1H), 3.41 (ddd, *J* = 8.8, 5.2, 2.0

Hz, 1H), 2.98 (dt, J = 10.8, 9.2 Hz, 1H), 2.76-2.67 (m, 1H), 2.53 (ddd, J = 14.4, 8.8, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.4, 132.9, 130.8, 130.4, 129.3, 129.0, 128.8, 128.6, 128.0, 95.1, 45.7, 29.6. HRMS (ESI) m/z calcd for C₁₇H₁₆N₃O₂ [M + H]⁺ 294.1243; found 294.1262.

1-Phenyl-4-(o-tolyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3b**). White solid (18 mg, 57% yield); mp 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.50-7.40 (m, 5H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.00 (s, 1H), 3.41 (ddd, *J* = 10.8, 8.8, 5.2 Hz, 1H), 2.98 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.74-2.67 (m, 1H), 2.51 (ddd, *J* = 14.4, 8.8, 5.2 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.3, 141.0, 130.4, 130.0, 129.7, 129.3, 128.7, 128.6, 128.0, 95.1, 45.7, 29.7, 21.4. HRMS (ESI) m/z calcd for C₁₈H₁₈N₃O₂ [M + H]⁺ 308.1399; found 308.1403.

1-Phenyl-4-(m-tolyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3c**). White solid (22 mg, 72% yield); mp 180-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.45 (m, 6H), 7.41-7.28 (m, 3H), 5.03 (s, 1H), 3.41 (ddd, J = 11.2, 9.2, 5.6 Hz, 1H), 2.98 (dt, J = 10.8, 9.2 Hz, 1H), 2.75-2.66 (m, 1H), 2.52 (ddd, J = 14.0, 8.8, 5.2 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.3, 141.0, 130.4, 130.0, 129.7, 129.3, 128.7, 128.6, 128.0, 95.1, 45.7, 29.7, 21.4. HRMS (ESI) m/z calcd for C₁₈H₁₈N₃O₂ [M + H]⁺ 308.1399; found 308.1416.

1-Phenyl-4-(p-tolyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3d**). White solid (24 mg, 78% yield); mp 181-182 °C¹H NMR (400 MHz, CDCl₃) δ 7.54-7.45 (m, 7H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.02 (s, 1H), 3.39 (ddd, *J* = 10.8, 9.2, 5.2 Hz, 1H), 2.97 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.73-2.65 (m, 1H), 2.51 (ddd, *J* = 14.4, 8.8, 5.6 Hz, 1H), 2.40 (s, 3H). ¹³C NMR

(100 MHz, CDCl₃) δ 168.3, 145.4, 140.6, 133.0, 130.8, 129.0, 128.8, 128.8, 128.4, 126.3, 95.1, 45.6, 29.7, 21.5. HRMS (ESI) m/z calcd for C₁₈H₁₇N₃NaO₂ [M + Na]⁺ 330.1218; found 330.1242.

4-(4-Methoxyphenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3e**). White solid (27 mg, 82% yield); mp 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.44 (m, 7H), 6.97-6.92 (m, 2H), 5.03 (s, 1H), 3.84 (s, 3H), 3.45-3.37 (m, 1H), 3.03-2.95 (m, 1H), 2.73-2.64 (m, 1H), 2.57-2.48 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 161.4, 145.1, 133.1, 132.9, 130.9, 130.8, 130.4, 130.0, 129.0, 129.0, 128.8, 121.5, 113.5, 95.0, 55.3, 45.4, 29.6. HRMS (ESI) m/z calcd for C₁₈H₁₈N₃O₃ [M + H]⁺ 324.1348; found 324.1360.

4-(4-(Methylthio)phenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6one (**3f**). (26 mg, 76% yield); mp 175-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.4 Hz, 2H), 7.50-7.40 (m, 5H), 7.33 (d, *J* = 8.4 Hz, 2H), 4.99 (s, 1H), 3.45-3.37 (m, 1H), 3.41 (ddd, *J* = 10.8, 9.2, 5.2 Hz, 1H), 3.03-2.93 (m, 1H), 2.75-2.66 (m, 1H), 2.54-2.48 (m, 1H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 145.3, 142.3, 130.4, 129.2, 129.1, 128.6, 128.0, 126.3, 94.8, 45.7, 29.6, 15.3. HRMS (ESI) m/z calcd for C₁₈H₁₈N₃O₂S [M + H]⁺ 340.1120; found 340.1116.

4-([1,1'-Biphenyl]-4-yl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6one (**3g**). White solid (21 mg, 57% yield); mp 174-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.61 (m, 6H), 7.56-7.43 (m, 7H), 7.38 (t, *J* = 7.2 Hz, 1H), 5.07 (s, 1H), 3.44 (ddd, *J* = 10.8, 9.2, 5.6 Hz, 1H), 3.02 (dt, *J* = 11.2, 8.8 Hz, 1H), 2.77-2.68 (m, 1H), 2.55 (ddd, *J* = 14.8, 9.2, 6.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 145.2, 143.2, 140.4, 133.0, 130.8, 129.0, 129.0, 128.8, 128.8, 128.1, 127.7, 127.3, 126.8, 95.1, 45.6, 29.6. HRMS (ESI) m/z

S4

calcd for $C_{23}H_{19}N_3NaO_2 [M + Na]^+ 392.1375$; found 392.1398.

4-(4-Bromophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3h**). White solid (29 mg, 79% yield); mp 191-193 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.43 (m, 9H), 5.01 (s, 1H), 3.41 (ddd, *J* = 11.2, 9.2, 5.6 Hz, 1H), 2.99 (dt, *J* = 11.2, 8.8 Hz, 1H), 2.73-2.65 (m, 1H), 2.52 (ddd, *J* = 14.8, 8.8, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 144.5, 132.7, 131.3, 131.0, 130.1, 129.1, 128.8, 128.2, 125.0, 95.1, 45.6, 29.5. HRMS (ESI) m/z calcd for C₁₇H₁₅BrN₃O₂ [M + H]⁺ 372.0348; found 372.0378.

4-(3-Bromophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3i**). White solid (30 mg, 80% yield); mp 192-194 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (t, J = 2.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.53-7.45 (m, 6H), 7.30 (t, J = 7.6 Hz, 1H), 5.01 (s, 1H), 3.41 (ddd, J = 10.8, 8.8, 5.6 Hz, 1H), 2.99 (dt, J = 10.8, 9.2 Hz, 1H), 2.74-2.65 (m, 1H), 2.52 (ddd, J = 14.4, 8.8, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 144.1, 133.4, 132.6, 131.5, 131.2, 131.0, 129.5, 129.1, 128.8, 127.2, 122.0, 95.1, 45.7, 29.5. HRMS (ESI) m/z calcd for C₁₇H₁₄BrN₃NaO₂ [M + Na]⁺ 394.0167; found 394.0185.

4-(3-Chlorophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3j**). White solid (25 mg, 76% yield); mp 173-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (t, J = 2.0 Hz, 1H), 7.53-7.43 (m, 7H), 7.35 (t, J = 7.6 Hz, 1H), 5.01 (s, 1H), 3.41 (ddd, J = 10.8, 9.2, 5.6 Hz, 1H), 2.98 (dt, J = 10.4, 9.6 Hz, 1H), 2.74-2.65 (m, 1H), 2.52 (ddd, J = 14.8, 8.8, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 144.2, 134.0, 132.6, 131.0, 130.9, 130.5, 129.2, 129.0, 128.8, 128.7, 126.8, 95.0, 45.6, 29.4. HRMS (ESI) m/z calcd for $C_{17}H_{14}CIN_3NaO_2$ [M + Na]⁺ 350.0672; found 350.0685.

1-Phenyl-4-(4-(trifluoromethyl)phenyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-

d][1,2,4,5]oxatriazin-6-one (**3k**). White solid (33 mg, 91% yield); mp 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 11.2, 8.4 Hz, 4H), 7.54-7.45 (m, 5H), 5.04 (s, 1H), 3.44 (ddd, J = 10.8, 8.8, 5.6 Hz, 1H), 3.01 (dt, J = 11.2, 8.8 Hz, 1H), 2.75-2.67 (m, 1H), 2.54 (ddd, J = 14.4, 8.8, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 144.3, 132.8 (J = 1.4 Hz), 132.6, 132.2 (J = 32.4 Hz), 131.0, 129.1, 129.0, 128.9, 125.0 (J = 3.7 Hz), 123.9 (J = 271.1 Hz), 95.2, 45.7, 29.4. HRMS (ESI) m/z calcd for C₁₈H₁₅F₃N₃O₂ [M + H]⁺ 362.1116; found 362.1108.

4-(4-Nitrophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3**I). Yellow solid (26 mg, 78% yield); mp 184-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.8 Hz, 2H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.55-7.47 (m, 5H), 5.06 (s, 1H), 3.43 (ddd, *J* = 11.2, 9.2, 6.0 Hz, 1H), 3.06 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.78-2.69 (m, 1H), 2.57 (ddd, *J* = 15.2, 9.2, 6.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 149.0, 143.7, 135.4, 132.4, 131.1, 129.6, 129.1, 128.8, 123.2, 95.2, 45.7, 29.3. HRMS (ESI) m/z calcd for C₁₇H₁₄N₄NaO₄ [M + Na]⁺ 361.0913; found 361.0915.

4-(3,4-Dichlorophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6one (**3m**). White solid (29 mg, 81% yield); mp 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 2.0 Hz, 1H), 7.54-7.45 (m, 6H), 7.41 (dd, *J* = 8.3, 2.1 Hz, 1H), 5.01 (s, 1H), 3.44 (ddd, *J* = 10.8, 8.8, 6.0 Hz, 1H), 3.01 (dt, *J* = 11.2, 8.8 Hz, 1H), 2.75-2.66 (m, 1H), 2.54 (ddd, *J* = 14.8, 8.8, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 143.5, 134.8, 132.5, 132.5, 131.0, 130.4, 130.0, 129.2, 129.1, 128.8, 127.8, 95.1, 45.6, 29.4. HRMS (ESI) m/z calcd for C₁₇H₁₄Cl₂N₃O₂ [M + H]⁺ 362.0463; found 362.0449.

4-(2,3-Dichlorophenyl)-1-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-

one (**3n**). White solid (20 mg, 55% yield); mp 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.53 (m, 3H), 7.52-7.45 (m, 3H), 7.39 (dd, J = 7.6, 1.6 Hz, 1H), 7.29 (dd, J = 15.3, 7.5 Hz, 1H), 4.95 (s, 1H), 3.27-3.23 (m, 1H), 2.86-2.68 (m, 2H), 2.49-2.43 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 142.5, 133.1, 132.6, 132.2, 132.1, 131.0, 131.0, 129.2, 129.0, 129.0, 127.4, 95.3, 47.4, 30.1. HRMS (ESI) m/z calcd for C₁₇H₁₄Cl₂N₃O₂ [M + H]⁺ 362.0463; found 362.0438.

1-(2-Chlorophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ba**). White solid (16 mg, 49% yield); mp 157-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.64 (m, 1H), 7.62-7.59 (m, 2H), 7.50-7.39 (m, 6H), 5.67 (s, 1H), 3.51-3.44 (m, 1H), 3.17-3.10 (m, 1H), 2.72-2.56 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 145.4, 134.3, 131.6, 130.8, 130.7, 130.6, 129.5, 129.3, 128.4, 128.1, 127.9, 89.9, 44.8, 29.7. HRMS (ESI) m/z calcd for C₁₇H₁₄ClN₃NaO₂ [M + Na]⁺ 350.0672; found 350.0693.

1-(3-Chlorophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ca**). White solid (18 mg, 55% yield); mp 159-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.54 (m, 3H), 7.51-7.45 (m, 2H), 7.44-7.38 (m, 4H), 4.99 (s, 1H), 3.42 (ddd, *J* = 10.8, 9.2, 5.2 Hz, 1H), 2.96 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.75-2.66 (m, 1H), 2.52 (ddd, *J* = 14.0, 8.8, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.5, 135.0, 134.8, 131.0, 130.5, 130.3, 129.0, 128.9, 128.6, 128.0, 127.0, 94.1, 45.7, 29.5. HRMS (ESI) m/z calcd for C₁₇H₁₄ClN₃NaO₂ [M + Na]⁺ 350.0672; found 350.0693.

1-(4-Chlorophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3da**). White solid (20 mg, 60% yield); mp 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.51-7.45 (m, 4H), 7.44-7.40 (m, 2H), 7.38-7.34 (m, 1H), 4.95 (s, 1H), 3.273.23 (m, 1H), 2.86-2.68 (m, 2H), 2.50-2.44 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 143.0, 134.1, 132.4, 131.4, 131.0, 131.0, 129.2, 129.0, 128.8, 128.7, 126.8, 95.3, 47.4, 30.2. HRMS (ESI) m/z calcd for C₁₇H₁₄ClN₃NaO₂ [M + Na]⁺ 350.0672; found 350.0693.

1-(2-Bromophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ea**). White solid (17 mg, 47% yield); mp 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.51-7.41 (m, 4H), 7.35 (td, *J* = 8.0, 2.0 Hz, 1H), 5.65 (s, 1H), 3.49 (dt, *J* = 11.2, 8.0 Hz, 1H), 3.21-3.14 (m, 1H), 2.75-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 145.4, 132.8, 132.5, 131.9, 131.1, 130.6, 129.3, 128.5, 128.4, 128.1, 124.3, 92.4, 44.7, 29.8. HRMS (ESI) m/z calcd for C₁₇H₁₄BrN₃NaO₂ [M + Na]⁺ 394.0167; found 394.0160.

1-(4-Bromophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3fa**). White solid (20 mg, 54% yield); mp 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.51-7.46 (m, 1H), 7.45-7.41 (m, 4H), 5.00 (s, 1H), 3.41 (ddd, J = 10.8, 9.2, 5.2 Hz, 1H), 2.95 (dt, J = 11.2, 8.8 Hz, 1H), 2.76-2.67 (m, 1H), 2.53 (ddd, J = 14.0, 8.8, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 145.5, 132.3, 132.0, 130.5, 130.4, 129.1, 128.6, 128.1, 125.3, 94.3, 45.7, 29.6. HRMS (ESI) m/z calcd for $C_{17}H_{14}BrN_3NaO_2$ [M + Na]⁺ 394.0167; found 394.0186.

1-(4-Fluorophenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ga**). White solid (17 mg, 55% yield); mp 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.40 (m, 7H), 7.17 (t, *J* = 8.4 Hz, 2H), 5.02 (s, 1H), 3.40 (ddd, *J* = 10.8, 9.2, 5.2 Hz, 1H), 2.95 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.76-2.67 (m, 1H), 2.52 (ddd, *J* = 14.0, 8.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 164.2 (*J* = 248.6 Hz), 145.4, 130.8 (*J* = 8.8 Hz), 130.5, 129.1,

S8

128.9 (J = 2.9 Hz), 128.6, 128.0, 116.2 (J = 21.9 Hz), 94.3, 45.7, 29.6. HRMS (ESI) m/z calcd for C₁₇H₁₄FN₃NaO₂ [M + Na]⁺ 334.0968; found 334.1003.

4-Phenyl-1-(4-(trifluoromethyl)phenyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-

d][1,2,4,5]oxatriazin-6-one (**3ha**). White solid (22 mg, 62% yield); mp 148-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.58-7.55 (m, 2H), 7.52-7.41 (m, 3H), 5.09 (s, 1H), 3.42 (ddd, *J* = 10.8, 8.8, 5.2 Hz, 1H), 2.96 (dt, *J* = 10.8, 9.2 Hz, 1H), 2.78-2.69 (m, 1H), 2.54 (ddd, *J* = 14.0, 8.8, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 145.6, 136.7, 132.9 (*J* = 32.7 Hz), 130.6, 129.4, 129.0, 128.6, 128.1, 126.0 (*J* = 3.6 Hz), 123.7 (*J* = 271.5 Hz), 94.1, 45.7, 29.5. HRMS (ESI) m/z calcd for C₁₈H₁₄F₃N₃NaO₂ [M + Na]⁺ 384.0936; found 384.0967.

4-Phenyl-1-(p-tolyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ia**). White solid (14 mg, 47% yield); mp 159-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 2H), 7.49-7.40 (m, 5H), 7.30 (d, J = 7.6 Hz, 2H), 5.00 (s, 1H), 3.41 (ddd, J = 10.8, 9.2, 5.2 Hz, 1H), 2.98 (dt, J = 11.2, 8.8 Hz, 1H), 2.74-2.65 (m, 1H), 2.51 (ddd, J = 14.0, 8.8, 5.2 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 145.3, 141.0, 130.4, 130.0, 129.7, 129.3, 128.7, 128.6, 128.0, 95.1, 45.7, 29.7, 21.4. HRMS (ESI) m/z calcd for C₁₈H₁₈N₃O₂ [M + H]⁺ 308.1399; found 308.1403.

1-(4-Methoxyphenyl)-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ja**). White solid (18 mg, 55% yield); mp 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 2H), 7.50-7.40 (m, 5H), 6.98 (d, J = 8.8 Hz, 2H), 4.99 (s, 1H), 3.85 (s, 3H), 3.40 (ddd, J = 10.8, 9.2, 5.2 Hz, 1H), 2.97 (dt, J = 10.8, 9.2 Hz, 1H), 2.74-2.65 (m, 1H), 2.51 (ddd, J = 14.0, 8.8, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 161.5, 145.2, 130.4, 130.1, 129.3, 128.6, 128.0, 125.0, 114.4, 94.8, 55.4, 45.7, 29.7. HRMS (ESI) m/z calcd for $C_{18}H_{18}N_3O_3 [M + H]^+$ 324.1348; found 324.1370.

4-Phenyl-1-(thiophen-2-yl)-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3ka**). White solid (16 mg, 53% yield); mp 176-178 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.54 (m, 3H), 7.50-7.46 (m, 1H), 7.44-7.40 (m, 2H), 7.34 (dd, J = 3.6, 1.2 Hz, 1H), 7.11 (dd, J= 5.2, 3.6 Hz, 1H), 5.10 (s, 1H), 3.55 (ddd, J = 10.8, 9.2, 5.2 Hz, 1H), 3.08 (dt, J = 11.2, 9.2 Hz, 1H), 2.78-2.68 (m, 1H), 2.54 (ddd, J = 14.4, 9.2, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.4, 134.7, 130.5, 129.4, 129.3, 129.0, 128.6, 128.0, 126.9, 90.6, 45.9, 29.5. HRMS (ESI) m/z calcd for C₁₅H₁₃N₃NaO₂S [M + Na]⁺ 322.0626; found 322.0629.

1-Butyl-4-phenyl-7,8-dihydro-1H,6H-pyrazolo[1,2-d][1,2,4,5]oxatriazin-6-one (**3la**). White solid (14 mg, 52% yield); mp 147-149 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.43 (m, 3H), 7.44-7.37 (m, 2H), 4.20 (dd, *J* = 6.8, 2.8 Hz, 1H), 3.73 (td, *J* = 9.6, 3.6 Hz, 1H), 3.07-2.30 (m, 1H), 2.73 (ddd, *J* = 16.8, 11.2, 9.2 Hz, 1H), 2.54 (ddd, *J* = 12.0, 8.4, 3.6 Hz, 1H), 1.93-1.84 (m, 1H), 1.82-1.73 (m, 1H), 1.70-1.49 (m, 2H), 1.47-1.36 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 145.5, 130.2, 129.2, 128.6, 127.9, 93.4, 46.1, 30.3, 29.6, 25.4, 22.7, 13.9. HRMS (ESI) m/z calcd for C₁₅H₂₀N₃O₂ [M + H]⁺ 274.1556; found 274.1579. 1-(4-Bromophenyl)-4-(4-methoxyphenyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-

d][1,2,4,5]oxatriazin-6-one (**3fe**). White solid (18 mg, 46% yield); mp 170-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 4.99 (s, 1H), 3.84 (s, 3H), 3.46-3.37 (m, 1H), 3.01-2.92 (m, 1H), 2.76-2.66 (m, 1H), 2.57-2.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 161.4, 145.2, 132.3, 132.3, 132.1, 130.4, 130.1, 128.3, 125.2, 121.3, 113.6, 94.2, 55.3, 45.4, 29.6. HRMS (ESI) m/z calcd for $C_{18}H_{17}BrN_3O_3$ [M + H]⁺ 402.0453; found 402.0473.

1-(4-Bromophenyl)-4-(4-(trifluoromethyl)phenyl)-7,8-dihydro-1H,6H-pyrazolo[1,2-

d][1,2,4,5]oxatriazin-6-one (**3fk**). White solid (25 mg, 58% yield); mp 191-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 4H), 7.64 (J = 8.4 Hz, 2H), 7.41 (J = 8.4 Hz, 2H), 5.01 (s, 1H), 3.45 (ddd, J = 10.8, 9.2, 5.2 Hz, 1H), 3.00 (dt, J = 10.8, 9.2 Hz, 1H), 2.78-2.69 (m, 1H), 2.55 (ddd, J = 14.8, 9.2, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 146.0, 144.4, 142.9, 133.2 (J = 30.8 Hz), 132.4, 131.6, 130.4, 129.0, 125.0 (J = 3.7 Hz), 124.0 (J = 271.1 Hz), 94.4, 45.8, 29.4. HRMS (ESI) m/z calcd for C₁₈H₁₄BrF₃N₃O₂ [M + H]⁺ 440.0221; found 440.0244.

Procedure for the synthesis of 4. To a solution of **3fa** (37 mg, 0.10 mmol) in THF/H₂O (2 mL, 9:1) was added Pd(PPh₃)₄ (11 mg, 0.01 mmol), phenylboronic acid (25 mg, 0.20 mmol), and Na₂CO₃ (16 mg, 0.15 mmol). The resulting mixture was stirred at 80 °C for 10 h under N₂. Upon completion of the reaction, water (5 mL) was added and the mixture was extracted with DCM (3 × 5 mL). The combined organic layers were dried and concentrated under reduced pressure followed by silica gel column chromatography purification (petroleum ether/ethyl acetate = 5:1) to give the coupling product **4** (21 mg, 58% yield) as a white solid; mp 150-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 2H), 7.61-7.56 (m, 6H), 7.48-7.36 (m, 6H), 5.04 (s, 1H), 3.41 (ddd, *J* = 10.8, 8.8, 5.2 Hz, 1H), 2.98 (dt, *J* = 11.2, 8.8 Hz, 1H), 2.71-2.62 (m, 1H), 2.49 (ddd, *J* = 14.4, 9.2, 5.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 145.3, 143.6, 140.1, 131.7, 130.4, 129.3, 129.2, 128.9, 128.5, 128.0, 127.9, 127.7, 127.2, 94.8, 45.7, 29.6. HRMS (ESI) m/z calcd for C₂₃H₁₉N₃NaO₂ [M + Na]⁺ 392.1375; found 392.1394.

References

(a) R. Na, C. Jing, Q. Xu, H. Jiang, X. Wu, J. Shi, J. Zhong, M. Wang, D. Benitez and E. Tkatchouk, J. Am. Chem. Soc., 2011, 133, 13337; (b) S. E. Winterton, and J. M. Ready, Org. Lett., 2016, 18, 2608.

 (a) L. Jiang, T. Gao, Z. Li, S. Sun, C. Kim, C. Huang, H. Guo, J. Wang and Y. Xing, *Tetrahedron Lett.*, 2016, 57, 712; (b) L. F. Minuti, M. G. Memeo, S. Crespi and P. Quadrelli, *Eur. J. Org. Chem.*, 2016, 821.

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3a

$\begin{array}{c} 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.75\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5.55\\ 7.5$

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3b**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3c**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3d

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3e

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3f**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3g**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3h**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3i**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3j

7.77 7.77 7.681 7.7681 7.662 7.7565 7.7565 7.7565 7.7565 7.7553 7.7565 7.7553 7.7565 7.7553 7.7557 7.5512 7.7557 7.5527 7.7557 7.5527 7.7556 7.482 7.466 7.7466 <

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3k

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3**I

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3m**

7.558 7.757 7.75588 7.75588 7.75588 7.75588 7.75588 7.75588 7.75588 7.75588

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3n**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ba**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ca

(1) 1, 2) 1, 2) 1, 2) 1, 2) 2, 2)

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3da

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ea

7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,756 7,748 7,487 7,497

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3fa**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ga**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ha**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ia**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ja**

7,7,565 7,7,567 7,7,557 7,7,557 7,7,557 7,7,557 7,7,557 7,7,557 7,7,557 7,7,557 7,7,557 7,7,477 7,477

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ka

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3la**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3fe

7.7.7.7.68 7.7.7.7.68 7.8.641 7.8.741 7.8.741 7.8.741 7.8.741 7.8.741 7.8.741

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3fk**

¹H NMR Spectrum (400 MHz, CDCl₃) of Compound 4

Figure S1. Crystal Structure of 31 (50% probability level for the thermal ellipsoids).

Formula	$C_{17} H_{14} N_4 O_4$
Formula weight	338.32
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a = 12.2898 (13) Å, $a = 90$ deg.
	$b = 11.4074 (13) \text{ Å}, \beta = 90 \text{ deg.}$
	$c = 22.636$ (3) Å, $\gamma = 90$ deg.
Volume	3173.5 (6) Å ³
Ζ	8
Density (calculated)	1.416 Mg / m ³
Absorption coefficient	0.104 mm ⁻¹
F(000)	1408
Crystal	0.25 x 0.21 x 0.12 mm
Theta range for data collection	3.572 to 26.997 deg
Limiting indices	-15<=h<=9, -14<=k<=8, -17<=l<=28
Reflections collected	9906
Independent reflections	3429 [R(int) = 0.0849]
Data / restraints / parameters	3429 / 12 / 226
Goodness-of-fit on F^2	0.924
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0578$, $wR_2 = 0.0742$
<i>R</i> indices (all data)	$R_1 = 0.1541, wR_2 = 0.0984$
Largest diff. peak and hole	0.160 and -0.210 e. Å ⁻³

Table S1. Crystal Data for Compound 31