Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019

1,2-Aminohalogenation of arynes with amines and organohalides

Sheng-Jun Li^a, Lu Han^a and Shi-Kai Tian*^{ab}

^{*a*} Hefei National Laboratory for Physical Sciences at the Microscale, Center for Excellence in Molecular Synthesis, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China E-mail: tiansk@ustc.edu.cn

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Supporting information

Table of contents

General information	S2
General procedure for the three-component reaction of amines, arynes, a	and carbon tetrachloride
(Schemes 3 and 4)	
Analytical data for the products (Schemes 3 and 4)	
Reaction of various organohalides (Scheme 5)	S10
Control experiments	S11
References	S12
Copies of NMR spectra	S13

General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-400 FT spectrometer (400 MHz and 100 MHz, respectively) using tetramethylsilane as an internal reference. NMR multiplicities were abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. Infrared spectra were recorded on Thermo Scientific Nicolet iS10 spectrophotometer. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). ESI-mass data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. EI-mass data was acquired using a Thermo Q Exactive GC Orbitrap GC-MS/MS instrument equipped with an EI source and controlled by Xcalibur software. Melting points are uncorrected.

Ph(CH₂)₃NMe₂ (**1m**) and amines **1o-q** were prepared according to literature procedures.¹⁻³ The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Energy chemical, Bide Pharmatech Ltd., Accela ChemBio Co., J&K Scientific, Meryer, Acros, Alfa Aesar, and TCI.

Unless otherwise noted, all the reactions were performed in oven-dried glassware with freshly distilled solvents.

Abbreviations: Bn = benzyl, DCE = 1, 2-dichloroethane, DMF = N,N-dimethylformamide, DMSO = dimethyl sulfoxide, NBS = N-bromosuccinimide, NCS = N-chlorosuccinimide, NIS = N-iodosuccinimide, TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy, THF = tetrahydrofuran, TMS = trimethylsilyl, Tf = trifluoromethanesulfonyl.

General procedure for the three-component reaction of amines, arynes, and carbon tetrachloride (Schemes 3 and 4)

Sealed reaction tubes containing dry KF (34.9 mg, 0.60 mmol) and 18-crown-6 (159 mg, 0.60 mmol) were sequentially added tetrahydrofuran (0.20 mL), carbon tetrachloride (**3a**) (0.10 mL), amine **1** (0.20 mmol), and 2-(trimethylsilyl)aryl triflate **2** (0.30 mmol). The mixture was stirred at 65 °C for 10 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:4 to 0:1 v/v), to give compound **4**.

Sealed reaction tubes containing dry CsF (91.1 mg, 0.60 mmol) were sequentially added tetrahydrofuran (0.20 mL), carbon tetrachloride (**3a**) (0.10 mL), amine **1r-t** (0.20 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (89.5 mg, 0.30 mmol). The mixture was stirred at 65 °C for 12 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture

eluent of ethyl acetate and petroleum ether (1:40 v/v), to give compound 4t.

Analytical data for the products (Schemes 3 and 4)

2-Chloro-*N*-methyl-*N*-phenylaniline (**4a**). Yellow oil (41.3 mg, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.6 Hz, 1H), 7.29-7.24 (m, 2H), 7.21-7.15 (m, 3H), 6.75 (t, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 8.0 Hz, 2H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 145.4, 133.7, 131.0, 130.3, 129.1, 128.3, 127.4, 117.9, 113.6, 39.1; IR (film, v/cm⁻¹) 3069, 2983, 2924, 2820, 1592, 1478, 1420, 1213, 1144, 1050, 995, 921, 845, 758, 599; HRMS (ESI) calcd for C₁₃H₁₃N³⁵Cl⁺ (M + H)⁺ 218.0731, found 218.0735.

2-Chloro-*N*-methyl-*N*-(*p*-tolyl)aniline (**4b**). Yellow oil (41.8 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 1H), 7.27-7.21 (m, 2H), 7.17-7.12 (m, 1H), 7.01-6.96 (m, 2H), 6.55-6.50 (m, 2H), 3.21 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 145.9, 133.4, 131.0, 129.8, 129.6, 128.2, 127.3, 127.0, 114.1, 39.3, 20.5; IR (film, v/cm⁻¹) 3035, 2915, 1617, 1513, 1479, 1333, 1050, 903, 809, 731, 651; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0881.

4-((2-Chlorophenyl)(methyl)amino)benzonitrile (**4c**). Yellow oil (38.6 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 8.0, 1.6 Hz, 1H), 7.42 (d, J = 8.8 Hz, 2H), 7.39-7.30 (m, 2H), 7.27 (dd, J = 7.6, 1.6 Hz, 1H), 6.52 (d, J = 8.8 Hz, 2H), 3.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 143.1, 133.6, 133.4, 131.2, 130.4, 128.9, 128.7, 120.4, 112.5, 99.2, 38.9; IR (film, v/cm⁻¹) 3069, 2924, 2829, 2219, 1599, 1513, 1481, 1359, 1178, 1050, 904, 826, 731; HRMS (ESI) calcd for C₁₄H₁₂N₂³⁵Cl⁺ (M + H)⁺ 243.0684, found 243.0681.

Ethyl 4-((2-chlorophenyl)(methyl)amino)benzoate (**4d**). Yellow oil (35.7 mg, 62% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.8 Hz, 2H), 7.49 (dd, J = 8.0, 1.2 Hz, 1H), 7.34-7.22 (m, 3H), 6.51 (d, J = 8.8 Hz, 2H), 4.30 (q, J = 7.2 Hz, 2H), 3.27 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 151.8, 143.8, 133.6, 131.1, 131.0, 130.4, 128.5, 128.4, 119.0, 111.8, 60.2, 38.9, 14.4; IR (film, v/cm⁻¹) 3069, 2983, 2897, 1703, 1608, 1512, 1478, 1356, 1273, 1178, 1100, 1049, 833, 766, 732, 689; HRMS (ESI) calcd for C₁₆H₁₇O₂N³⁵Cl⁺ (M + H)⁺ 290.0942, found 290.0936.

2-Chloro-*N*-methyl-*N*-(4-nitrophenyl)aniline (**4e**). Pale green oil (44.7 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.2 Hz, 2H), 7.56 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.40 (td, *J* = 7.6, 1.6 Hz, 1H), 7.35 (td, *J* = 7.6, 2.0 Hz, 1H), 7.30 (dd, *J* = 7.6, 2.0 Hz, 1H), 6.49 (d, *J* = 9.2 Hz, 2H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 142.9, 138.5, 133.5, 131.4, 130.3, 129.3, 128.9, 126.0, 111.6, 39.4; IR (film, v/cm⁻¹) 3078, 2924, 2855, 1591, 1488, 1307, 1187, 1101, 1058, 911, 826, 735, 679; HRMS (ESI) calcd for C₁₃H₁₂O₂N₂³⁵Cl⁺ (M + H)⁺ 263.0582, found 263.0583.

2-Chloro-*N*-(4-fluorophenyl)-*N*-methylaniline (**4f**). Yellow oil (43.4 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.28-7.13 (m, 3H), 6.91-6.84 (m, 2H), 6.56-6.50 (m, 2H), 3.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3 (d, *J* = 235.0 Hz), 145.7, 145.3 (d, *J* = 1.8 Hz), 133.3, 131.1, 129.7, 128.3, 127.3, 115.5 (d, *J* = 22.1 Hz), 115.0 (d, *J* = 7.4 Hz), 39.6; IR (film, v/cm⁻¹) 3061, 2915, 2811, 1505, 1479, 1333, 1230, 1050, 809, 756, 735; HRMS (ESI) calcd for C₁₃H₁₂N³⁵ClF⁺ (M + H)⁺ 236.0637, found 236.0635.

2-Chloro-*N*-(4-chlorophenyl)-*N*-methylaniline (**4g**). Yellow oil (46.2 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.30-7.17 (m, 3H), 7.13-7.07 (m, 2H), 6.51-6.45 (m, 2H), 3.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 144.9, 133.6, 131.1, 130.2, 128.9, 128.4, 127.8, 122.7, 114.6, 39.2; IR (film, v/cm⁻¹) 3061, 2945, 2889, 1591, 1488, 1340, 1247, 1050, 904, 817, 731, 679; HRMS (ESI) calcd for C₁₃H₁₂N³⁵Cl₂⁺ (M + H)⁺ 252.0341, found 252.0332.

N-(4-Bromophenyl)-2-chloro-*N*-methylaniline (**4h**). Colorless oil (54.1 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.33-7.20 (m, 5H), 6.47-6.42 (m, 2H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 144.8, 133.7, 131.8, 131.2, 130.2, 128.5, 127.9, 115.0, 109.9, 39.2; IR (film, v/cm⁻¹) 3068, 2932, 2819, 1582, 1488, 1341, 1247, 1051, 809, 740, 679; HRMS (ESI) calcd for C₁₃H₁₂N⁷⁹Br³⁵Cl⁺ (M + H)⁺ 295.9836, found 295.9829.

2-Chloro-*N*-methyl-*N*-(*m*-tolyl)aniline (**4i**). Yellow oil (42.7 mg, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.45 (m, 1H), 7.30-7.24 (m, 2H), 7.21-7.16 (m, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.59 (d, *J* = 7.6 Hz, 1H), 6.44-6.38 (m, 2H), 3.22 (s, 3H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 145.5, 138.8, 133.7, 131.0, 130.3, 128.9, 128.2, 127.4, 118.9, 114.3, 110.9, 39.1, 21.9; IR (film, v/cm⁻¹) 3044, 2924, 1608, 1575, 1488, 1350, 1050, 758, 731, 689; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0887.

2-Chloro-*N*-methyl-*N*-(*o*-tolyl)aniline (**4j**). Yellow oil (36.0 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.18-7.09 (m, 3H), 7.03-6.97 (m, 2H), 6.97-6.92 (m, 1H), 6.90 (dd, *J* = 8.0, 1.6 Hz, 1H), 3.15 (s, 3H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 148.4, 133.0, 131.5, 131.0, 129.3, 127.6, 126.7, 124.2, 124.0, 123.6, 121.4, 41.1, 18.6; IR (film, v/cm⁻¹) 3061, 2958, 1582, 1479, 1316, 1235, 1050, 912, 758, 731, 672; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0881.

(8*S*,11*R*,13*S*,14*S*,17*S*)-11-(4-((2-Chlorophenyl)(methyl)amino)phenyl)-17-hydroxy-13-methyl-1 7-(prop-1-yn-1-yl)-1,2,6,7,8,11,12,13,14,15,16,17-dodecahydro-3*H*-cyclopenta[*a*]phenanthren-3-one (**4k**). Pale green oil (70.1 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.42 (m, 1H), 7.27-7.23 (m, 2H), 7.19-7.14 (m, 1H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.52 (d, *J* = 8.4 Hz, 2H), 5.75 (s, 1H), 4.35 (br, 1H), 3.21 (s, 3H), 2.81-2.72 (m, 1H), 2.58-2.52 (m, 2H), 2.48-2.18 (m, 8H), 2.03-1.90 (m, 2H), 1.87 (s, 3H), 1.77-1.66 (m, 2H), 1.49-1.30 (m, 2H), 0.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 157.1, 146.9, 146.5, 145.5, 133.4, 133.2, 130.9, 129.9, 129.0, 128.1, 127.3, 127.1, 122.6, 113.8, 82.4, 82.3, 80.0, 49.8, 46.8, 39.6, 39.1, 39.0, 38.8, 36.8, 31.1, 27.3, 25.8, 23.3, 13.8, 3.9; IR (film, v/cm⁻¹) 3422, 2941, 2880, 2245, 1651, 1505, 1488, 1341, 1238, 1041, 912, 731, 644; HRMS (ESI) calcd for C₃₄H₃₇O₂N³⁵Cl⁺ (M + H)⁺ 526.2507, found 526.2512.

N-(2-Chlorophenyl)-*N*-methylnaphthalen-1-amine (**4**). Yellow oil (48.8 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.42-7.32 (m, 4H), 7.10-7.04 (m, 2H), 6.96-6.91 (m, 2H), 3.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 147.3, 135.0, 131.1, 129.3, 129.0, 128.3, 127.6, 125.9, 125.8, 125.7, 124.5, 124.3, 124.1, 123.8, 118.5, 42.0; IR (film, v/cm⁻¹) 3052, 2958, 1565, 1480, 1393, 1308, 1101, 1041, 908, 771, 721; HRMS (ESI) calcd for C₁₇H₁₅N³⁵Cl⁺ (M + H)⁺ 268.0888, found 268.0893.

2-Chloro-*N*-methyl-*N*-(3-phenylpropyl)aniline (**4m**). Colorless oil (26.8 mg, 52% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 8.0, 1.6 Hz, 1H), 7.29-7.24 (m, 2H), 7.21-7.14 (m, 4H), 7.04 (dd, J = 8.0, 1.6 Hz, 1H), 6.96-6.91 (m, 1H), 3.07-3.01 (m, 2H), 2.77 (s, 3H), 2.67-2.61 (m, 2H), 1.93-1.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 142.2, 130.8, 129.2, 128.5, 128.4, 127.4, 125.9, 123.4, 121.5, 55.1, 41.2, 33.3, 29.1; IR (film, v/cm⁻¹) 3061, 3018, 2932, 2855, 2803, 1591, 1479, 1452, 1290, 1041, 953, 749, 697; HRMS (ESI) calcd for C₁₆H₁₉N³⁵Cl⁺ (M + H)⁺ 260.1201, found 260.1193.

2-Chloro-*N*-cyclohexyl-*N*-methylaniline (**4n**). Yellow oil (34.8 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 8.0, 1.6 Hz, 1H), 7.17 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 7.06 (dd, J = 8.0, 1.6 Hz, 1H), 6.93-6.88 (m, 1H), 3.14 (tt, J = 11.6, 3.2 Hz, 1H), 2.70 (s, 3H), 1.83-1.73 (m, 4H),

1.65-1.57 (m, 1H), 1.51-1.38 (m, 2H), 1.30-1.17 (m, 2H), 1.15-1.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 130.7, 129.4, 127.0, 123.0, 122.8, 61.6, 33.8, 29.2, 26.2, 26.1; IR (film, v/cm⁻¹) 3069, 2925, 2853, 2794, 1592, 1481, 1454, 1299, 1101, 1050, 947, 759, 679; HRMS (ESI) calcd for C₁₃H₁₉N³⁵Cl⁺ (M + H)⁺ 224.1201, found 224.1204.

2-Chloro-*N*,3-dimethyl-*N*-phenylaniline (**40**). Colorless oil (42.2 mg, 91% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.15 (m, 4H), 7.14-7.09 (m, 1H), 6.74 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 2H), 3.22 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 145.5, 138.5, 134.2, 129.0, 128.9, 127.8, 127.4, 117.6, 113.2, 39.0, 20.9; IR (film, v/cm⁻¹) 3061, 3031, 2924, 2811, 1599, 1572, 1496, 1341, 1273, 1050, 933, 741, 687; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0890.

A 55:45 mixture of 2-chloro-*N*,5-dimethyl-*N*-phenylaniline (**4p**) and 2-chloro-*N*,4-dimethyl-*N*-phenylaniline (**4p'**) was obtained as a colorless oil (41.8 mg, 90% yield). Compound **4p** was distinguished from its regioisomer **4p'** by comparing the NMR proton-proton coupling constant for the proton next to the chlorine on the benzene ring. ¹H NMR (400 MHz, CDCl₃) for amine **4p**: δ 7.35 (d, *J* = 8.4 Hz, 1H), 7.22-7.13 (m, 2H), 7.11-7.06 (m, 1H), 7.01 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.78-6.71 (m, 1H), 6.59 (t, *J* = 8.0 Hz, 2H), 3.23 (s, 3H), 2.30 (s, 3H); ¹H NMR (400 MHz, CDCl₃) for amine **4p'**: δ 7.30 (s, 1H), 7.22-7.13 (m, 3H), 7.11-7.06 (m, 1H), 6.78-6.71 (m, 1H), 6.59 (t, *J* = 8.0 Hz, 2H), 3.23 (s, 3H), 2.30 (s, 3H); ¹H NMR (400 MHz, CDCl₃) for amine **4p'**: δ 7.30 (s, 1H), 7.22-7.13 (m, 3H), 7.11-7.06 (m, 1H), 6.78-6.71 (m, 1H), 6.59 (t, *J* = 8.0 Hz, 2H), 3.22 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 148.8, 145.0, 142.7, 138.4, 137.8, 133.4, 131.4, 130.7, 130.6, 130.5, 130.0, 129.1, 129.0, 128.3, 117.7, 117.6, 113.5, 113.3, 39.1, 39.0, 20.9; IR (film, v/cm⁻¹) 3037, 2924, 2810, 1591, 1496, 1340, 1135, 1048, 806, 740, 689; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0885.

2-Chloro-*N*,4,5-trimethyl-*N*-phenylaniline (**4q**). Pale yellow oil (44.3 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (s, 1H), 7.18-7.12 (m, 2H), 7.01 (s, 1H), 6.71 (t, *J* = 7.2 Hz, 1H), 6.59-6.54 (m, 2H), 3.18 (s, 3H), 2.21 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 142.6, 136.9, 136.4, 131.5, 131.1, 130.3, 129.0, 117.4, 113.2, 39.0, 19.3, 19.2; IR (film, v/cm⁻¹) 3035, 2932, 2882,

2820, 1599, 1496, 1452, 1340, 1134, 981, 912, 731, 689, 637; HRMS (ESI) calcd for $C_{15}H_{17}N^{35}Cl^+$ (M + H)⁺ 246.1044, found 246.1046.

2-Chloro-4,5-dimethoxy-*N*-methyl-*N*-phenylaniline (**4r**). Colorless oil (31.5 mg, 57% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.17 (m, 2H), 6.96 (s, 1H), 6.78-6.72 (m, 2H), 6.57 (d, *J* = 8.0 Hz, 2H), 3.90 (s, 3H), 3.81 (s, 3H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 148.1, 137.5, 129.1, 124.9, 117.4, 113.0, 112.8, 112.7, 56.4, 56.3, 38.9; IR (film, v/cm⁻¹) 3011, 2934, 2855, 1599, 1496, 1447, 1211, 1178, 1032, 844, 723, 693; HRMS (ESI) calcd for C₁₅H₁₇O₂N³⁵Cl⁺ (M + H)⁺ 278.0942, found 278.0945.

3-Chloro-*N*-methyl-*N*-phenylnaphthalen-2-amine (**4s**). Pale yellow oil (45.5 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.78-7.71 (m, 3H), 7.51-7.43 (m, 2H), 7.22-7.17 (m, 2H), 6.78 (t, *J* = 7.2 Hz, 1H), 6.65 (dd, *J* = 8.8, 0.8 Hz, 2H), 3.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 143.3, 133.1, 132.4, 132.3, 129.4, 129.1, 128.3, 127.5, 126.9, 126.8, 126.5, 118.1, 114.0, 39.8; IR (film, v/cm⁻¹) 3052, 2924, 2811, 1591, 1496, 1454, 1356, 1127, 1006, 876, 741, 689, 609; HRMS (ESI) calcd for C₁₇H₁₅N³⁵Cl⁺ (M + H)⁺ 268.0888, found 268.0889.

2-Chloro-*N*-(2-chlorophenyl)-*N*-methylaniline (**4t**). Yellow oil (32.9 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.20 (td, *J* = 8.0, 1.6 Hz, 2H), 7.05-6.98 (m, 4H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 131.1, 129.5, 127.6, 124.5, 123.5, 41.0; IR (film, v/cm⁻¹) 3069, 2966, 2924, 2855, 1591, 1471, 1316, 1238, 1084, 1050, 904, 758, 733; HRMS (ESI) calcd for C₁₃H₁₂N³⁵Cl₂⁺ (M + H)⁺ 252.0341, found 252.0344.

2-Chloro-*N*-ethyl-*N*-phenylaniline (**4u**). Colorless oil (43.0 mg, 93% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.31-7.13 (m, 5H), 6.72 (td, *J* = 7.2, 0.8 Hz, 1H), 6.56 (dd, *J* = 8.0, 0.8 Hz, 2H), 3.68 (q, *J* = 7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 143.7, 134.5, 131.8, 131.1, 129.1, 128.2, 127.6, 117.5, 113.5, 45.5, 12.8; IR (film, v/cm⁻¹) 3061, 2975, 1599, 1496, 1368, 1264, 1050, 749, 689; HRMS (ESI) calcd for C₁₄H₁₅N³⁵Cl⁺ (M + H)⁺ 232.0888, found 232.0888.

2-Chloro-*N*,*N*-diethylaniline (**4v**). Colorless oil (30.2 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.19 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 7.08 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.96 (ddd, *J* = 8.0, 7.2, 1.6 Hz, 1H), 3.13 (q, *J* = 7.2 Hz, 4H), 1.03 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 131.0, 130.7, 127.0, 123.8, 123.7, 46.8, 12.3; IR (film, v/cm⁻¹) 3061, 2968, 2924, 2855, 1592, 1479, 1462, 1375, 1256, 1050, 799, 759, 672; HRMS (ESI) calcd for C₁₀H₁₅N³⁵Cl⁺ (M + H)⁺ 184.0888, found 184.0890.

N-Benzhydryl-2-chloro-*N*-(4,4,4-trichlorobutyl)aniline (**4w**). Colorless oil (58.4 mg, 65% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.36 (m, 5H), 7.30-7.25 (m, 4H), 7.23-7.18 (m, 2H), 7.04 (td, *J* = 7.6, 1.6 Hz, 1H), 6.96 (td, *J* = 7.6, 1.6 Hz, 1H), 6.82 (dd, *J* = 8.0, 1.6 Hz, 1H), 5.52 (s, 1H), 3.03 (t, *J* = 7.2 Hz, 2H), 2.65-2.58 (m, 2H), 1.86-1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 140.5, 132.6, 130.7, 128.7, 128.3, 127.3, 126.8, 126.7, 125.3, 100.0, 71.2, 52.9, 47.5, 23.5; IR (film, v/cm⁻¹) 3354, 3069, 3035, 2932, 2856, 1591, 1479, 1444, 1256, 1050, 904, 741, 697, 623; HRMS (ESI) calcd for C₂₃H₂₂N³⁵Cl₄⁺ (M + H)⁺ 452.0501, found 452.0497.

N,*N*-Dibenzyl-2-chloroaniline (**4x**). Colorless oil (50.7 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.33-7.29 (m, 4H), 7.28-7.23 (m, 4H), 7.21-7.16 (m, 2H), 7.06-7.00 (m, 1H), 6.92-6.87 (m, 2H), 4.19 (s, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 138.2, 130.7, 130.2, 128.6, 128.3, 127.1, 127.0, 124.0, 123.9, 56.2; IR (film, v/cm⁻¹) 3065, 3025, 2931, 2846, 2806, 1591, 1479, 1455, 1368, 1204, 1032, 911, 733, 697; HRMS (ESI) calcd for C₂₀H₁₉N³⁵Cl⁺ (M + H)⁺ 308.1201, found 308.1201.

N,*N*-Diallyl-2-chloroaniline (**4y**). Colorless oil (31.6 mg, 76% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.19-7.13 (m, 1H), 7.03 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.94 (td, *J* = 7.6, 1.6 Hz, 1H), 5.81 (ddt, *J* = 16.4, 10.0, 6.0 Hz, 2H), 5.22-5.10 (m, 4H), 3.72 (d, *J* = 6.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 134.9, 130.8, 129.7, 126.9, 123.6, 123.5, 117.7, 55.0; IR (film, v/cm⁻¹) 3087, 2982, 2932, 2829, 1643, 1591, 1479, 1445, 1419, 1213, 1038, 995, 921, 756, 725, 686; HRMS (ESI) calcd for C₁₂H₁₅N³⁵Cl⁺ (M + H)⁺ 208.0888, found 208.0891.

Diphenylamine (**5**). Pale yellow solid (27.8 mg, 82% yield); m.p. 49-50 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 4H), 7.06 (dd, J = 8.4, 0.8 Hz, 4H), 6.92 (t, J = 7.2 Hz, 2H), 5.68 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 129.5, 121.1, 117.9. This result is consistent with previous literature.⁴

Reaction of various organohalides (Scheme 5)

Sealed reaction tubes containing dry KF (34.9 mg, 0.60 mmol) and 18-crown-6 (159 mg, 0.60 mmol) were sequentially added tetrahydrofuran (0.20 mL), organohalide **3b-j** (0.60 mmol), amine **1a** (24.2 mg, 0.20 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (89.5 mg, 0.30 mmol). The mixture was stirred at 65 °C for 10 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:40 to 0:1 v/v), to give compound **4a**, **6a**, or **7a**.

2-Bromo-*N*-methyl-*N*-phenylaniline (**6a**). Colorless oil (43.4 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 8.0, 1.6 Hz, 1H), 7.31 (td, J = 7.6, 1.6 Hz, 1H), 7.24 (dd, J = 8.0, 1.6 Hz, 1H), 7.21-7.15 (m, 2H), 7.11 (td, J = 8.0, 1.6 Hz, 1H), 6.75 (t, J = 7.2 Hz, 1H), 6.57 (d, J = 8.8

Hz, 2H), 3.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 147.0, 134.2, 130.5, 129.0, 127.9, 124.4, 117.8, 113.5, 39.1; IR (film, v/cm⁻¹) 3061, 2906, 2811, 1599, 1582, 1496, 1341, 1032, 912, 723, 686, 651; HRMS (ESI) calcd for C₁₃H₁₃N⁷⁹Br⁺ (M + H)⁺ 262.0226, found 262.0226. This result is consistent with previous literature.⁵

2-Iodo-*N*-methyl-*N*-phenylaniline (**7a**). Colorless oil (34.9 mg, 57% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.44 (m, 2H), 7.32-7.26 (m, 2H), 7.08-7.00 (m, 3H), 6.72-6.66 (m, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 148.4, 137.9, 129.5, 123.0, 122.6, 120.6, 82.1, 40.3; IR (film, v/cm⁻¹) 3042, 2924, 2811, 1575, 1480, 1341, 1256, 1129, 1066, 903, 809, 731, 797; HRMS (ESI) calcd for C₁₃H₁₃NI⁺ (M + H)⁺ 310.0087, found 310.0089.

Control experiments

Sealed reaction tube containing dry KF (34.9 mg, 0.60 mmol) and 18-crown-6 (159 mg, 0.60 mmol) were sequentially added tetrahydrofuran (0.20 mL), carbon tetrachloride (3a) (0.10 mL), and 2-(trimethylsilyl)phenyl triflate (2a) (89.5 mg, 0.30 mmol). The mixture was stirred at 65 °C for 10 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:20)v/v), give to 1-chloro-2-((5,5,5-trichloropentyl)oxy)benzene (8) as a colorless oil (33.7 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 8.0, 1.6 Hz, 1H), 7.19 (ddd, J = 8.4, 7.6, 1.6 Hz, 1H), 6.92-6.85 (m, 2H), 4.05 (t, J = 6.0 Hz, 2H), 2.83-2.78 (m, 2H), 2.06-1.89 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 130.4, 127.8, 123.1, 121.6, 113.5, 100.0, 68.6, 54.9, 28.0, 23.5; IR (film, v/cm⁻¹) 3069, 2941, 2879, 1591, 1478, 1282, 1247, 1067, 912, 778, 731, 697; HRMS (EI) calcd for C₁₁H₁₂O³⁵Cl₄⁺ (M⁺) 299.9637, found 299.9636.

Sealed reaction tube containing dry KF (34.9 mg, 0.60 mmol), 18-crown-6 (159 mg, 0.60 mmol), and TEMPO (62.4 mg, 0.40 mmol) were sequentially added tetrahydrofuran (0.20 mL), carbon

tetrachloride (**3a**) (0.10 mL), amine **1a** (24.2 mg, 0.20 mmol), and 2-(trimethylsilyl)phenyl triflate (**2a**) (89.5 mg, 0.30 mmol). The mixture was stirred at 65 °C for 10 h, cooled to room temperature, and purified directly by silica gel chromatography with the mixture eluent of ethyl acetate and petroleum ether (1:40 v/v), to give compound **4a** (35.3 mg, 81% yield) as a yellow oil.

Instead, addition of 10 equiv. of TEMPO gave compound 4a (16.1 mg, 37% yield).

References

- 1 B. Sukanta, Synth. Commun., 2000, 30, 2001-2008.
- 2 L. Zhang, C. Peng, D. Zhao, Y. Wang, H.-J. Fu, Q. Shen and J.-X. Li, *Chem. Commun.*, 2012, 48, 5928-5930.
- 3 N.-H. Nguyen, N. Bogliotti, R. Chennoufi, E. Henry, P. Tauc, E. Salas, L. J. Roman, A. Slama-Schwok, E. Deprez and J. Xie, *Org. Biomol. Chem.*, 2016, **14**, 9519-9532.
- 4 D. Guo, H. Huang, J. Xu and H. Jiang, Org. Lett., 2008, 10, 4513-4516.
- 5 T. L. Andrew and T. M. Swager, J. Org. Chem., 2011, 76, 2976-2993.

		· · · ·		· · · ·	· · · ·	· · ·		· · · ·	1		· · · ·	1	· · · ·		· · ·	· · ·	· · ·		· · ·	· · ·	· · ·		_
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
	fl (ppm)																						

	$\circ \sim \circ \circ$
44400000000	~ ~ ~ ~ ~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	















9887225 9812334490 9812334490 982255 982255 982255 982255 982255 982255 982255 982255 982255 982255 982255 982255 982255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 982555 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98255 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 98555 985555 985555 985555 985555 98555 985555 985555 985555 985555 985555 985555 985555 985555 985555 985555 985555 985555 985555 985555 9855555 9855555 985555 9855555 9855555 9855555 98555555 9855555 9855555 985555555 9855555555	70 70 70 70 70 70 70 70 70 70 70 70 70 7
SSSSS211111111100000666666888111111555	LLL000000044446000000000000000000000000









04U
-----



























































	-		1						· ·			· · ·		· ·		· ·	· ·	· ·	· · ·	· ·	· · ·	
200		190	180	170	160	150	140	130	120	110	100	90	8	30	70	60	50	40	30	20	10	0
	f1 (ppm)																					













