Inverting the reactivity of troponoid system in the higher-order cycloaddition

Sebastian Frankowski ${ }^{\ddagger}$, Anna Skrzyńska ${ }^{\ddagger}$ and $Ł u k a s z ~ A l b r e c h t * ~$
Institute of Organic Chemistry Department of Chemistry, Lodz University of Technology Zeromskiego 116, 90-924 Łódź, Poland e-mail: lukasz.albrecht@p.lodz.pl
http://www.a-teamlab.p.lodz.pl

Contents

1. General methods page S2
2. Synthesis of tropothione 1 page S3
3. Organocatalytic higher-order cycloaddition in the synthesis of $\mathbf{3}$ page S4

Enantioselective synthesis of ($2 S, 3 R, 3 \mathrm{aS}$)-2-phenyl-3,3a-dihydro-2H-
cyclohepta[b]thiophene-3-carbaldehyde 3a on a 1 g scale
5. Hetero-Diels-Alder reaction of 3a with electron-poor $\mathrm{N}=\mathrm{N}$ double bond
page S11
One-pot synthesis of (R)-2-phenyl-2H-cyclohepta[b]thiophene-3-
carbaldehyde 9
7. Synthesis of (R)-2-phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde 9
page S13
Crystal and X-ray data for (2S,3R,3aS)-2-(4-nitrophenyl)-3,3a-dihydro-2H-
cyclohepta[b]thiophene-3-carbaldehyde 3d
Crystal and X ray data for $\left(2 S^{*}, 3 R^{*}, 3 \mathrm{a} S^{*}, 6 S^{*}, 11 \mathrm{a} R^{*}\right)-8,10$-dioxo-2,9-
9. diphenyl-3,3a,6,8,9,10-hexahydro-2H-6,11a-ethenothieno[2,3-
c][1,2,4]triazolo[1,2- a][1,2]diazepine-3-carbaldehyde rac-6
10. NMR data
11. $U P C^{2}$ traces

1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for ${ }^{1} \mathrm{H}$ and 176 MHz for ${ }^{13} \mathrm{C}$, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl_{3} : 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR, 77.16 ppm for ${ }^{13} \mathrm{C} N M R$). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+) ionization (referenced to the mass of the charged species, due to the oxidative conditions of the analysis in the mass spectra of the products $\mathbf{3}$ only the molecular peaks of the corresponding 9 were observed and therefore are reported). Optical rotations were measured on a Perkin-Elmer 241 polarimeter and $[\alpha]_{D}$ values are given in deg $\cdot \mathrm{cm}^{\circ} \cdot \mathrm{g}^{-1} \bullet \mathrm{dm}^{-1}$; concentration c is listed in $g \bullet(100$ $\mathrm{mL})^{-1}$. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminumbacked plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or Hanessian's stain. The enantiomeric ratio (er) of the products was determined by chiral stationary phase UPC ${ }^{2}$ (Daicel Chiralpak IA and IC column). Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (60, 35-70 $\mu \mathrm{m}$, Merck KGaA). Aromatic unsaturated aldehydes were obtained using literature procedure. ${ }^{1}$

[^0]
2. Synthesis of tropothione 1

1
Tropone ($212 \mathrm{mg}, 195 \mu \mathrm{~L}, 2 \mathrm{mmol}$) was placed in a flame-dried round bottom flask and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. After cooling to $-20^{\circ} \mathrm{C}$ Lawesson's reagent ($202 \mathrm{mg}, 1 \mathrm{mmol}, 0.5$ equiv.) was added in one portion. After stirring for 0.5 h at $-20^{\circ} \mathrm{C}$, the reaction mixture was subjected to flash chromatography on silica gel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Fraction containing pure product 1 was evaporated under reduced pressure with ice-cold bath cooling. Pure product 1 was obtained as a red solid ($146 \mathrm{mg}, 60 \%$ yield) and stored as 1.0 M solution in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. Spectroscopic data were in accordance with those reported in literature ${ }^{2}$.

2 T. Machiguchi, Tetrahedron 1995, 51, 1133.

3. Organocatalytic higher-order cycloaddition in the synthesis of 3

1
In an ordinary 4 mL glass vial, equipped with a teflon-coated magnetic stirring bar and a screw cap corresponding α, β-unsaturated aldehyde $\mathbf{2}$ (1.0 equiv., 0.1 mmol), catalyst $\mathbf{4 d}$ (0.2 equiv., $0.02 \mathrm{mmol}, 12 \mathrm{mg})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ and 1.0 M solution of tropothione $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.15 \mathrm{~mL}, 0.15 \mathrm{mmol})$ was added. After stirring for 24 h at ambient temperature pure products $\mathbf{3}$ were isolated by flash chromatography on silica gel (eluent: hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 80:20 to 70:30).

(2S,3R,3aS)-2-Phenyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3a

Following the general procedure, 3a was isolated by FC on silica gel in 80% yield (20.3 mg) as dark red viscous oil ($>20: 1 \mathrm{dr}$). ${ }^{1 \mathrm{H}} \mathrm{NMR}$ (700 MHz , Chloroform-d) $\delta 9.70(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}$, $2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{dd}, \mathrm{J}=11.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=11.2,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.17$ (ddd, $J=9.4,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.02 (dd, $J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (ddd, $J=9.7,8.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.19-3.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2,137.4,137.0,130.5,129.1(2 \mathrm{C}), 128.6,128.2,128.1$ (2C), 127.4, 124.7, 116.1, 69.6, 54.6, 48.6. HRMS calculated for [$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OS}+\mathrm{H}^{+}$]: 253.0682; found: 253.0685. $[\alpha]_{\mathrm{D}}{ }^{22}=34.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=260$ $\mathrm{nm} ; \tau_{\text {major }}=2.95 \mathrm{~min}, \tau_{\text {minor }}=2.82 \mathrm{~min}$, ($>99: 1 \mathrm{er}$).

(2S,3R,3aS)-2-(p-Tolyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3b

Following the general procedure, $\mathbf{3 b}$ was isolated by FC on silica gel in 60% yield (16.1 mg) as dark red viscous oil (>20:1 dr). ${ }^{1} \mathrm{H}$ NMR (700 MHz, Chloroform-d) $\delta 9.69$ (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.17-7.16$ (m, 2H), 6.47 (dd, $J=11.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ (dd, $J=11.1$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (ddd, $J=9.5,5.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=9.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=9.9,8.1,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.14 (ddt, J = 8.0, 3.9, 1.8 Hz, 1H), 2.34 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 199.4, 138.4, 137.6, $133.8,130.4,129.8(2 \mathrm{C}), 128.2,127.9(2 \mathrm{C}), 127.4,124.8,116.0,69.6,54.5,48.6,21.3$. HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{OS}+\mathrm{H}^{+}\right]$: 267.0838 ; found: 267.0840. $[\alpha]_{\mathrm{D}}{ }^{23}=26.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to
40%; i-PrOH, $2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=334 \mathrm{~nm} ; \tau_{\text {major }}=3.14 \mathrm{~min}, \tau_{\text {minor }}=2.92 \mathrm{~min}$, (>99:1 er).
(2S,3R,3aS)-2-(4-Methoxyphenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 3c

Following the general procedure, 3c was isolated by FC on silica gel in 88% yield (25.0 mg) as dark red viscous oil (>20:1 dr). ${ }^{1} \mathrm{H}$ NMR (700 MHz, Chloroform-d) $\delta 9.68$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{dd}, \mathrm{J}=11.1,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.42 (dd, $J=11.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-$ $6.14(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=9.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{ddd}, J=$ $10.0,8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (ddt, $J=8.0,3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.4$, $159.8,137.6,130.4,129.2$ (2C), 128.6, 128.2, 127.4, 124.8, 116.1, 114.5 (2C), 69.7, 55.5, 54.2, 48.5. HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}\right.$]: 283.0787; found: 283.0789. $[\alpha]_{\mathrm{D}}{ }^{22}=57.3^{\circ}(c=1.0$, CHCl_{3}). The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from 100% CO_{2} up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=325 \mathrm{~nm} ; \tau_{\text {major }}=3.53 \mathrm{~min}, \tau_{\text {minor }}=$ 3.36 min , (>99:1 er).
(2S,3R,3aS)-2-(4-Nitrophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3d

Following the general procedure, 3d was isolated by FC on silica gel in 72% yield (21.5 mg) as yellow crystal solid (tt. $=123-124^{\circ} \mathrm{C}$) (>20:1 dr). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.73$ (d, J = 1.4 Hz , 1H), 8.23-8.20 (m, 2H), 7.68-7.65 (m, 2H), 6.54-6.50(m, 1H), 6.46 (dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26$ (dd, $J=6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (ddd, $J=9.3,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (d, J = 8.5 Hz, 1H), 5.01 (dd, J = 9.3, 4.4 Hz, 1H), 3.53 (ddd, J=8.6, 7.4, 1.4 Hz, 1H), 3.14 (ddt, J $=7.6,4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.3,147.9,145.0,135.9,130.8,129.2$ (2C), 128.6, 127.8, 124.3 (2C), 124.2, 116.5, 69.4, 53.2, 48.6. HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}^{+}\right]$: 297.0460; found: 297.0462. $[\alpha]_{\mathrm{D}}{ }^{22}=176.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC² using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i$\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=290 \mathrm{~nm} ; \tau_{\text {major }}=4.06 \mathrm{~min}, \tau_{\text {minor }}=3.69 \mathrm{~min},(>99: 1$ er).

(2S,3R,3aS)-2-(4-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde

 3e

Following the general procedure, 3e was isolated by FC on silica gel in 70% yield (20.2 mg) as dark red viscous oil ($>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.70(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.48$ (dd, $J=11.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=11.1$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.22(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{ddd}, J=9.4,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$
(dd, J = 9.4, 4.3 Hz, 1H), 3.49 (ddd, $J=9.4,7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (ddt, $J=7.9,3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,136.8,135.7,134.3,130.6,129.5$ (2C), 129.3 (2C), 128.4, 127.5, 124.5, 116.2, 69.6, 53.7, 48.6. HRMS calculated for [$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClOS}+\mathrm{H}^{+}$]: 287.0292; found: 287.0289. $[\alpha]_{D^{22}}^{22}=23.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=343 \mathrm{~nm} ; \tau_{\text {major }}=3.31 \mathrm{~min}, \tau_{\text {minor }}=3.02 \mathrm{~min}$, ($>99: 1 \mathrm{er}$).

(2S,3R,3aS)-2-(3-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3f

Following the general procedure, 3 f was isolated by FC on silica gel in 63% yield (18.1 mg) as dark red viscous oil ($>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.71(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}$, $1 \mathrm{H}), 7.29-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.47(\mathrm{~m}, 1 \mathrm{H}), 6.44$ (dd, $J=11.1,5.7 \mathrm{~Hz}$, 1 H), 6.24 (dd, $J=6.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18$ (ddd, J = 9.4, $5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (d, J = 9.3 Hz, 1H), 5.02 (dd, J = 9.4, 4.3 Hz, 1H), 3.52 (ddd, J = 9.4, 7.8, 1.8 Hz, 1H), 3.12 (ddt, J $=7.8,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,139.3,136.7,135.0,130.6,130.3$, $128.8,128.4,128.2,127.5,126.4,124.5,116.3,69.5,53.8,48.6$. HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClOS}+\mathrm{H}^{+}\right]$: 287.0292; found: 287.0295. $[\alpha]_{D_{0}}^{22}=59.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IB column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i $\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=326 \mathrm{~nm} ; \tau_{\text {major }}=2.66 \mathrm{~min}, \tau_{\text {minor }}=2.81 \mathrm{~min}$, (98:2 er)

(2S,3R,3aS)-2-(2-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3 g

Following the general procedure, $\mathbf{3 g}$ was isolated by FC on silica gel in 67% yield (19.3 mg) as dark red viscous oil ($>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, Chloroform-d) $\delta 9.73$ (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.40$ $(\mathrm{m}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.53$ (ddd, $J=11.1,6.4$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.42 (dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (dd, $J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.10 (ddd, J = 9.4, 5.8, 1.7 Hz, 1H), 5.67 (d, J = $6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.79 (dd, J = 9.3, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (ddd, $J=6.8,5.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (ddt, $J=5.0,3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 198.5, 137.3, 135.1, 133.8, 131.1, 130.1, 129.6, 129.5, 128.1, 127.5, 127.1, 124.5, 116.0, 68.1, 50.6, 47.6. HRMS calculated for [$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClOS}+\mathrm{H}^{+}$]: 287.0292; found: 287.0295. [$\left.\alpha\right]_{\mathrm{D}}{ }^{22}=41.8^{\circ}$ (c $=1.0, \mathrm{CHCl}_{3}$). The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to $40 \% ; i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=341 \mathrm{~nm} ; \tau_{\text {major }}=2.81 \mathrm{~min}$, $\tau_{\text {minor }}=2.92 \mathrm{~min}$, (98:2 er)

Following the general procedure, 3 h was isolated by FC on silica gel in 65% yield (19.8 mg) as dark red viscous oil (>20:1 dr). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.75$ (d, J=1.7 Hz, 1H), $8.22-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.93-7.88$ $(\mathrm{m}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.47-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.56$ (ddd, $J=11.1,6.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=$ $11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (dd, $J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (ddd, $J=9.4,5.8$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=7.2,5.8,1.7 \mathrm{~Hz}$, 1 H), 3.23 (ddt, $J=6.1,4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.7,137.6,134.2,132.5$, 131.3, 131.0, 129.3, 129.1, 128.0, 127.0, 126.9, 126.1, 125.6, 125.5, 124.7, 122.9, 115.9, 67.3, 50.3, 48.3. HRMS calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{OS}+\mathrm{H}^{+}\right]$: 303.0838; found: 303.0840. $[\alpha]_{D^{22}}=65.3^{\circ}(c=$ 1.0, CHCl_{3}). The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to $40 \% ; i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=350 \mathrm{~nm} ; \tau_{\text {major }}=3.69 \mathrm{~min}$, $\tau_{\text {minor }}=3.59 \mathrm{~min}$, (>99:1 er).
($2 S, 3 R, 3 a S$)-2-(Furan-2-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3i

Following the general procedure, $\mathbf{3 i}$ was isolated by FC on silica gel in 64% yield (15.6 mg)as dark red viscous oil ($>20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{ddd}, J=11.1$, $6.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dt}, J=3.3,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.33$ (dd, $J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.19 (dd, $J=6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14$ (ddd, $J=9.4,5.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26$ (dd, $J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (ddd, $J=7.7,6.4,1.5 \mathrm{~Hz}$, 1 H), 3.11 (ddt, $J=6.3,4.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.8,150.6,143.0,136.3$, $130.8,128.2,127.1,124.3,116.0,110.9,108.4,65.5,47.9,46.9$. HRMS calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}\right]: 243.0474$; found: 243.0480. $[\alpha]_{\mathrm{D}}{ }^{23}=168.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i PrOH, $2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=265 \mathrm{~nm} ; \tau_{\text {major }}=2.74 \mathrm{~min}, \tau_{\text {minor }}=2.53 \mathrm{~min}$, $(98: 2$ er).

(2R,3R,3aS)-2-Propyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3j

Following the general procedure, $\mathbf{3 j}$ was isolated by FC on silica gel in 65% yield (14.3 mg) as dark red viscous oil ($12: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.69$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=11.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.17-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J=9.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.09-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.87$ (dddd, $J=14.1,10.3,6.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dtd}, J=13.5,9.9,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.49-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2,137.6$, 131.1, 127.7, 127.3, 124.3, 115.9, 67.2, 51.6, 48.5, 36.6, 22.5, 13.9. HRMS calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{OS}+\mathrm{H}^{+}\right]$: 219.0838; found: 219.0841. $[\alpha]_{\mathrm{D}} 22=76.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i -

PrOH, $2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=350 \mathrm{~nm} ; \tau_{\text {major }}=2.87 \mathrm{~min}, \tau_{\text {minor }}=2.08 \mathrm{~min},(98.5: 1.5$ er).

(2R,3R,3aS)-2-Hexyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3k

Following the general procedure, $\mathbf{3 k}$ was isolated by FC on silica gel in 63% yield (16.5 mg) as dark red viscous oil (17:1:1 dr) ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.69$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.46$ (dd, $J=11.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}$) , $6.17-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{dd}, J=9.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02 (ddd, $J=10.0,6.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.67(\mathrm{~m}$, $1 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.2,137.6$, 131.1, 127.7, 127.3, 124.3, 115.9, 67.2, 51.9, 48.5, 34.5, 31.7, 29.2, 29.1, 22.7, 14.2. HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{OS}+\mathrm{H}^{+}\right]$: 261.1308; found: 261.1310. $[\alpha]_{\mathrm{D}}^{22}=66.2^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=352 \mathrm{~nm}$; $\tau_{\text {major }}=3.12 \mathrm{~min}, \tau_{\text {minor }}=2.36 \mathrm{~min}$, (98:2 er).

(2S,3R,3aS)-2-((Benzyloxy)methyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 3I

Following the general procedure, $\mathbf{3 1}$ was isolated by FC on silica gel in 65% yield (19.4 mg) as dark red viscous oil ($13: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.67(d, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.50-6.46$ $(\mathrm{m}, 1 \mathrm{H}), 6.38$ (dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.10$ (ddd, J $=9.4,5.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, \mathrm{J}=9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28$ (ddd, $J=8.8,6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.7,8.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}), 3.41(\mathrm{td}, \mathrm{J}=4.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{tt}, \mathrm{J}=4.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(176} \mathrm{MHz} \mathrm{CDCl} 3,\right) ~ \delta$ 199.7, 137.6, 137.0, 131.5, 128.7 (2C), 128.2, 128.1 (2C), 127.7, 127.2, 124.1, 115.9, 73.4, 70.6, 62.6, 49.6, 47.2. HRMS calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}^{+}\right]$: 296.0944; found: 297.0947. $[\alpha]_{D^{23}}=$ $72.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=344 \mathrm{~nm}$; $\tau_{\text {major }}$ $=3.39 \mathrm{~min}, \tau_{\text {minor }}=3.08 \mathrm{~min}$, (98.5:1.5er)
(2R,3R,3aS)-2-((Z)-Hex-3-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3 m

Following the general procedure, 3 m was isolated by FC on silica gel in 67% yield (17.4 mg) as dark red viscous oil ($20: 1 \mathrm{dr}$). ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.68$ (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.49-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.37$ $(\mathrm{m}, 1 \mathrm{H}), 6.18-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.46-5.42(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.06$ - $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.1,137.4$,
133.6, 131.2, 127.6, 127.3, 127.0, 124.3, 115.8, 66.9, 51.1, 48.3, 34.5, 26.6, 20.8, 14.4. HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}+\mathrm{H}^{+}\right]$: 259.1151; found: 259.1158. $[\alpha]_{\mathrm{D}}{ }^{22}=71.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IG column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; $i-\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=299 \mathrm{~nm} ; \tau_{\text {major }}=3.13 \mathrm{~min}, \tau_{\text {minor }}=2.27 \mathrm{~min}$, (98.5:1.5 er).

(2R,3R,3aS)-2-Methyl-2-(5-methylhex-4-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3n

Following the general procedure, $\mathbf{3 n}$ was isolated by FC on silica gel in 67% yield (18.4 mg) as dark red viscous oil (3.5:1 dr). Major diastereoisomer: ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.82$ (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47-6.36$ (m, 2H), 6.24 (dd, J = 6.6, 1.8 Hz, 1H), 6.15 (ddd, $J=9.7,5.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dddd, $J=7.1,5.7,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, J = 9.5, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (ddt, $J=9.5,3.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, $J=9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.28-2.21$ (m, 1H), 2.08 (ddd, $J=19.3,12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.02 (ddd, $J=13.8,11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (ddd, $J=13.8,11.2,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.176 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 200.6,137.1,132.9$, 130.1, 127.9, 127.2, 124.2, 123.2, 117.6, 70.9, 61.9, 47.3, 40.7, 25.8, 25.2, 24.9, 17.9. Minor diastereoisomer: ${ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.88(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.46-6.37(\mathrm{~m}$, 2 H , overlapping with major diastereoisomer), 6.22 (dd, $J=6.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15 (ddt, $J=9.0$, $5.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with major diastereoisomer), 5.09 (ddq, $J=8.6,5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.91 (ddd, J = 9.9, 5.9, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with major diastereoisomer), 3.26 (dd, J = 3.9, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (dd, J = 9.4, 2.4 Hz, 1H, overlapping with major diastereoisomer), $2.28-2.21$ ($\mathrm{m}, 1 \mathrm{H}$, overlapping with major diastereoisomer), 2.08 (ddd, $J=19.3,12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with major diastereoisomer), 2.02 (ddd, $J=13.8,11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with major diastereoisomer), 1.95 (ddd, $J=13.8,11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$, overlapping with major diastereoisomer), $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.3$, 137.2, 132.7, 130.1 (overlapping with major diastereoisomer), 127.9, 127.1, 124.7, 123.4, 117.2, 77.2, 73.0, 62.0, 47.6, 38.5, 29.9, 25.8, 25.8, 24.7, 24.3, 17.8. HRMS calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{OS}+\mathrm{H}^{+}\right]: 273.1308$; found: 273.1313. $[\alpha]_{\mathrm{D}}{ }^{22}=73.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IA column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i $\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=354 \mathrm{~nm} ; \tau_{\text {major }}=2.36 \mathrm{~min}, \tau_{\text {minor }}=1.94 \mathrm{~min}$, $98: 2$ er).
4. Enantioselective synthesis of (2S,3R,3aS)-2-phenyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3a on a 1 g scale

In a round-bottom flask equipped with a magnetic stirring bar, aldehyde $\mathbf{2 a}$ (1 equiv., 7.58 $\mathrm{mmol}, 1.00 \mathrm{~g}$), catalyst 4d (0.2 equiv., $1.52 \mathrm{mmol}, 0.905 \mathrm{~g}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(19 \mathrm{~mL})$. Subsequently, 1.0 M solution of tropothione $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.4 \mathrm{~mL}, 11.4 \mathrm{mmol})$ was added and the reaction mixture was stirred for 24 h at ambient temperature. Crude product 3a was purified by the flash chromatography on silica gel (eluent: hexanes: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from 80:20 to $70: 30$) to afford 3 a in 78% yield ($1.500 \mathrm{~g},>20: 1 \mathrm{dr}$) as a dark red viscous oil. NMR and HPLC data were in accordance with previously obtained results.

5. Hetero-Diels-Alder reaction of 3a with electron-poor $\mathrm{N}=\mathrm{N}$ double bond

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap 3a ($25.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{~mL}$) and 4-phenyl-1,2,4-triazoline-3,5-dione 5 ($21.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) was added in one portion. After stirring at ambient temperature for 18 h crude reaction mixture was directly subjected to flash chromatography (eluent: $\mathrm{Et}_{2} \mathrm{O}$: hexanes 8:2). Product 6 was obtained as white crystals in 90% yield (38.7 mg). ($2 S, 3 R, 3 \mathrm{aS}, 6 \mathrm{~S}, 11 \mathrm{aR}$)-8,10-Dioxo-2,9-diphenyl-3,3a,6,8,9,10-hexahydro-2H-6,11a-ethenothieno[2,3-c][1,2,4]triazolo[1,2-a][1,2]diazepine-3-carbaldehyde $6{ }^{1} \mathrm{H}$ NMR (700 MHz , Chloroform-d) $\delta 9.61$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.48-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, \mathrm{J}=$ $8.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.56 (dd, $J=8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (ddd, $J=11.2,7.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.77$ $(\mathrm{m}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=12.8,11.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (dt, J=12.6, 2.5 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.4,150.8,150.7,135.9,134.3,131.5$, 131.1, 130.8, 129.3 (2C), 129.2 (2C), 129.1 (2C), 128.8, 128.5, 126.3 (2C), 123.3, 75.2, 62.4, $58.8,54.7,49.6$. HRMS calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}^{+}\right]: 430.1220$; found: 430.1229. [$\left.\alpha\right]_{D^{24}}=-$ $81.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$.

6. Synthesis of (R)-2-phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde 9

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap 6 (42.9 mg ; 0.1 mmol ; 1.0 equiv.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and trifluoroacetic acid ($11.4 \mathrm{mg} ; 0.1 \mathrm{mmol} ; 1.0$ equiv.) was added in one portion. After stirring in ambient temperature for 10 minutes crude reaction mixture was directly subjected to flash column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Product was obtained as a red amorphous solid in 75% yield (18.9 mg). (\boldsymbol{R})-2-Phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde ${ }^{1} \mathrm{H} \mathrm{NMR}(700 \mathrm{MHz}$, Chloroform-d) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.43(\mathrm{dt}, J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{ddt}, J=10.8,8.7,0.9 \mathrm{~Hz}$, 1H), $6.20-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 185.0,160.6,153.8,143.8$, $135.2,133.9,130.4,129.6,128.8$ (2C), 127.7, 127.5 (2C), 124.2, 123.9, 56.6. HRMS calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{OS}+\mathrm{H}^{+}\right]$: 253.0682 ; found: 253.0685. $[\alpha]_{\mathrm{D}}{ }^{23}=-790.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$. The er was determined by UPC ${ }^{2}$ using a chiral Chiralpack IA column gradient from $100 \% \mathrm{CO}_{2}$ up to 40%; i $\mathrm{PrOH}, 2.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=336 \mathrm{~nm} ; \tau_{\text {major }}=4.52 \mathrm{~min}, \tau_{\text {minor }}=4.69 \mathrm{~min}$, $98: 2$ er).

7. One-pot synthesis of (R)-2-phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde 9

(1.2 equiv)
rt, 10 min .

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar and a screw cap 3a (25.4 mg ; $0.1 \mathrm{mmol} ; 1.0$ equiv) was dissolved in $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ and 4-phenyl-1,2,4-triazoline-3,5-dione (21.0 mg ; $0.12 \mathrm{mmol} ; 1.2$ equiv) was added in one portion. After stirring in ambient temperature for 18 h trifluoroacetic acid ($13.7 \mathrm{mg} ; 0.12 \mathrm{mmol} ; 1.2$ equiv) was added in one portion. After stirring in room temperature for 30 minutes crude reaction mixture was directly subjected to flash column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Product was obtained as a red amorphous solid in 52% yield (13.1 mg). NMR and HPLC data were in accordance with previously obtained results.

8. Crystal and X-ray data for (2S,3R,3aS)-2-(4-nitrophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3d

Single crystal X-ray diffraction data were collected at 100 K by the ω-scan technique using a RIGAKU XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer ${ }^{3}$ with PhotonJet micro-focus Xray Source Cu-K $\quad(\lambda=1.54184 \AA$). Data collection, cell refinement, data reduction and absorption correction were performed using CrysAlis PRO software. ${ }^{3}$ The crystal structure was solved by using direct methods with the SHELXT 2018/2 program. ${ }^{4}$ Atomic scattering factors were taken from the International Tables for X-ray Crystallography. Positional parameters of non-H-atoms were refined by a full-matrix least-squares method on F^{2} with anisotropic thermal parameters by using the SHELXL 2018/3 program. ${ }^{5}$ All hydrogen atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) and included as riding contributions with isotropic displacement parameters set to 1.2 times the $U_{\text {eq }}$ of the parent atom.

3d: Formula $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$, orthorhombic, space group $\mathrm{P}_{1} 2_{1} 2_{1}, Z=4$, unit cell constants $a=$ $6.9092(1), b=10.1436(1), c=19.7001(1) \AA, V=1380.67(3) \AA^{3}$. The integration of the data yielded a total of 40039 reflections with θ angles in the range of 4.49 to 66.53°, of which all 2435 unique ($\mathrm{R}_{\text {int }}=2.04 \%$) were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final anisotropic full-matrix leastsquares refinement on F^{2} with 191 parameters converged at $R_{1}=1.92 \%$ and $w R_{2}=4.83 \%$ for all data. The largest peak in the final difference electron density synthesis was 0.152 e \AA^{-3} and the largest hole was -0.150 e \AA^{-3}. The goodness-of-fit was 1.100 . The absolute configuration was unambiguously determined from anomalous scattering, by calculating the x Flack parameter ${ }^{6}$ of -0.007 (3) using 995 quotients.

CCDC 1906777 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

9. Crystal and X-ray data for ($\left.2 S^{*}, 3 R^{*}, 3 a S^{*}, 6 S^{*}, 11 a R^{*}\right)$-8,10-dioxo-2,9-diphenyl-3,3a,6,8,9,10-hexahydro-2H-6,11a-ethenothieno[2,3-c][1,2,4]triazolo[1,2-a][1,2]diazepine-3carbaldehyde rac-6

The relative configuration of 6 was assigned based on the single crystal X-ray analysis of crystals obtained via recrystallization of racemic sample of rac- 6 . The absolute configuration of 6 was established given the result of this expaeriment and the assignment of the absolute configuration of $\mathbf{3}$ (for details see paragraph above). The single crystal X-ray diffraction study at 100 K revealed that compound rac- $6\left(\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$ crystallizes in the centrosymmetric monoclinic space group $P 2_{1} / c \quad(Z=8)$ and the crystal structure consists of two crystallographically independent formula units in the unit cell. The independent molecules have an inverted configuration and a similar conformation. One of these molecules has a disordered formyl group.

Single crystal X-ray diffraction data were collected at 100 K by the ω-scan technique using a RIGAKU XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer ${ }^{3}$ with PhotonJet micro-focus Xray Source $\mathrm{Cu}-\mathrm{K} \alpha(\lambda=1.54184 \AA$ Å). Data collection, cell refinement, data reduction and absorption correction were performed using CrysAlis PRO software. ${ }^{3}$ The crystal structure was solved by using direct methods with the SHELXT 2018/2 program. ${ }^{4}$ Atomic scattering factors were taken from the International Tables for X-ray Crystallography. Positional parameters of non-H-atoms were refined by a full-matrix least-squares method on F^{2} with anisotropic thermal parameters by using the SHELXL 2018/3 program. ${ }^{5}$ All hydrogen atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95-1.00 \AA$) and included as riding contributions with isotropic displacement parameters set to 1.2 times the $U_{\text {eq }}$ of the parent atom.
rac-6: Formula $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$, monoclinic, space group $P 2_{1} / c, Z=8$, unit cell constants $a=$ $10.2822(1), b=14.2079(1), c=27.6670(1) \AA, b=100.257(1)^{\circ}, V=3977.24(5) \AA^{3}$. The integration of the data yielded a total of 134496 reflections with θ angles in the range of 3.25 to 66.60 of which 7009 were independent ($R_{\text {int }}=2.72 \%$), and 6889 were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final anisotropic full-matrix least-squares refinement on F^{2} with 568 parameters converged to $R_{1}=3.32 \%$ for observed data and $w R_{2}=8.36 \%$ for all data. The goodness-of-fit was 1.074.

The largest peak in the final difference electron density synthesis was 0.357 e \AA^{-3} and the largest hole was -0.263 e \AA^{-3}. CCDC 1920168 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

[^1]10. NMR data
(2S,3R,3aS)-2-Phenyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3a
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

(2S,3R,3aS)-2-(p-Tolyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3b

${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR

 じ

(2S,3R,3aS)-2-(4-Methoxyphenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 3c
${ }^{1} \mathrm{H}$ NMR

(2S,3R,3aS)-2-(4-Nitrophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3d

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(2S,3R,3aS)-2-(4-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde $3 e$

${ }^{1} \mathrm{H}$ NMR

(2S,3R,3aS)-2-(3-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde $3 f$

${ }^{1} \mathrm{H}$ NMR

(2S,3R,3aS)-2-(2-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3 g

${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(2S,3R,3aS)-2-(Naphthalen-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3h
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR
$\stackrel{\circ}{\circ}$

(2S,3R,3aS)-2-(Furan-2-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3i

${ }^{1} \mathrm{H}$ NMR

(2R,3R,3aS)-2-Propyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3j
${ }^{1} \mathrm{H}$ NMR

${ }^{13}$ C NMR
$\stackrel{\sim}{i}$

${ }^{13}$ C NMR
$\stackrel{\overbrace{}}{\circ}$

(2S,3R,3aS)-2-((Benzyloxy)methyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 31

${ }^{1} \mathrm{H}$ NMR

(2R,3R,3aS)-2-((Z)-Hex-3-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3m
${ }^{1} \mathrm{H}$ NMR

(2R,3R,3aS)-2-Methyl-2-(5-methylhex-4-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3n

${ }^{1} \mathrm{H}$ NMR

(2S,3R,3aS,6S,11aR)-8,10-Dioxo-2,9-diphenyl-3,3a,6,8,9,10-hexahydro-2H-6,11a-ethenothieno[2,3-c][1,2,4]triazolo[1,2-a][1,2]diazepine-3-carbaldehyde 6
${ }^{1} \mathrm{H}$ NMR

${ }^{13} \mathrm{C}$ NMR

(R)-2-Phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde 9
${ }^{1} \mathrm{H}$ NMR

11. UPC ${ }^{2}$ traces
(2S,3R,3aS)-2-Phenyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3a

	RT	Area	\% Area	Height
1	2.815	187820	56.08	80507
2	2.945	147075	43.92	72573

	RT	Area	\% Area	Height
1	2.834	1660	0.48	1145
2	2.959	343710	99.52	164630

(2S,3R,3aS)-2-(p-Tolyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3b

	RT	Area	\% Area	Height
1	2.917	113546	43.67	40139
2	3.141	146442	56.33	53585

	RT	Area	\% Area	Height
1	2.935	1811	0.56	772
2	3.147	320220	99.44	136273

(2S,3R,3aS)-2-(4-Methoxyphenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 3c

	RT	Area	\% Area	Height
1	3.361	163383	42.66	62558
2	3.526	219644	57.34	82435

	RT	Area	\% Area	Height
1	3.369	3304	0.72	1495
2	3.504	455912	99.28	144578

(2S,3R,3aS)-2-(4-Nitrophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3d

	RT	Area	\% Area	Height
1	3.691	211605	40.46	85663
2	4.064	311372	59.54	108205

	RT	Area	\% Area	Height
1	3.686	2134	0.37	1105
2	4.039	578614	99.63	166339

	RT	Area	\% Area	Height
1	3.024	246716	40.95	107902
2	3.309	355697	59.05	131648

	RT	Area	\% Area	Height
1	3.042	488	0.13	265
2	3.318	381457	99.87	139616

	RT	Area	\% Area	Height
1	2.663	255991	56.74	115585
2	2.812	195188	43.26	87838

	RT	Area	\% Area	Height
1	2.693	450933	98.14	119026
2	2.832	8528	1.86	3326

(2S,3R,3aS)-2-(2-Chlorophenyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3 g

	RT	Area	\% Area	Height
1	2.809	333019	54.72	128942
2	2.924	275519	45.28	99036

	RT	Area	\% Area	Height
1	2.797	251435	97.96	109038
2	2.951	5238	2.04	2833

	RT	Area	\% Area	Height
1	3.590	63008	42.24	26858
2	3.692	86141	57.76	36676

	RT	Area	\% Area	Height
1	3.615	283	0.17	120
2	3.709	164685	99.83	64424

(2S,3R,3aS)-2-(Furan-2-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3i

	RT	Area	\% Area	Height
1	2.530	120475	51.68	51066
2	2.744	112626	48.32	50701

	RT	Area	\% Area	Height
1	2.552	17816	1.90	9715
2	2.768	917792	98.10	443659

(2R,3R,3aS)-2-Propyl-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3j

	RT	Area	\% Area	Height
1	2.077	279743	45.85	113451
2	2.870	330345	54.15	157890

	RT	Area	\% Area	Height
1	2.085	4685	1.43	2399
2	2.862	322670	98.57	140151

	RT	Area	\% Area	Height
1	2.360	47526	41.62	16087
2	3.123	66672	58.38	28099

	RT	Area	\% Area	Height
1	2.370	8342	2.04	5266
2	3.106	399834	97.96	167040

(2S,3R,3aS)-2-((Benzyloxy)methyl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3carbaldehyde 31

	RT	Area	\% Area	Height
1	3.075	71023	47.55	33469
2	3.387	78328	52.45	35253

	RT	Area	\% Area	Height
1	3.073	1510	1.46	948
2	3.387	102126	98.54	44272

(2R,3R,3aS)-2-((Z)-Hex-3-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3m

	RT	Area	\% Area	Height
1	2.273	77891	46.66	29615
2	3.130	89055	53.34	41056

	RT	Area	\% Area	Height
1	2.270	3375	1.46	1743
2	3.144	227274	98.54	107749

(2R,3R,3aS)-2-Methyl-2-(5-methylhex-4-en-1-yl)-3,3a-dihydro-2H-cyclohepta[b]thiophene-3-carbaldehyde 3n

	RT	Area	\% Area	Height
1	1.942	284434	49.09	80059
2	2.362	294956	50.91	92322

	RT	Area	$\%$ Area	Height
1	1.947	2341	2.03	981
2	2.355	112889	97.97	33783

(R)-2-Phenyl-2H-cyclohepta[b]thiophene-3-carbaldehyde 9

Peak Results

	RT	\% Area
1	4.517	51.67
2	4.687	48.33

Peak Results

	RT	\% Area
1	4.520	97.97
2	4.695	2.03

[^0]: 1 N. Daubresse, C. Francesch and C. Rolando, Tetrahedron, 1998, 54, 10761.

[^1]: 3 Rigaku OD. CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2019.
 4 G. M. Sheldrick Acta Cryst. 2015, A71, 3.
 5 G. M. Sheldrick Acta Cryst. 2015, C71, 3.
 6 S. Parsons, H. D. Flac and T. Wagner Acta Cryst. 2013, B69, 249.

