Supporting Information

Switching Hydrogen Bonds to Readily Interconvert Two Room-Temperature Long-Term Stable Crystalline Polymorphs in Chiral Molecular Perovskites

Wang-Hua Hu,^a Wei-Jian Xu,^{ab} Qian-Ru Meng,^a Xue-Wen Zhang,^a Chun-Ting He,^{ac} Wei-Xiong Zhang ^{*a} and Xiao-Ming Chen^a

 ^a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
 ^b Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
 ^c MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.

*e-mail: zhangwx6@mail.sysu.edu.cn

Experimental Details

Materials

Reagents and solvents were commercially available and used without further purification.

Synthesis of 1a

(*R*-C₅H₁₂NO)[CdCl₃] (1α) was synthesized by adding an aqueous solution of CdCl₂ (0.228 g, 1.0 mmol) to a stirred aqueous solution of *R*-3-hydroxypiperidine hydrochloride (0.138 g, 1.0 mmol) at room temperature for 5 minutes. The resulted clear solution was allowed to evaporate at room temperature for several days, then the colorless crystals were obtained in a yield of 84%. Elemental analysis, calcd (%) for 1α (C₅H₁₂NOCdCl₃): C, 18.71; N, 4.36; H, 3.77. Found C, 18.68; N, 4.26; H, 3.96.

Synthesis of 1^β

 $(R-C_5H_{12}NO)[CdCl_3]$ (1 β) was synthesized by adding CdCl₂ (0.456 g, 2.0 mmol) and *R*-3-hydroxypiperidine hydrochloride (0.276 g, 2.0 mmol) in aqueous solution, morpholine hydrochloride (0.123 g, 1.0 mmol) was used as additive agent. The resulted clear solution was allowed to evaporate at room temperature for several days, and the colorless crystals were obtained in a yield of 70%. Elemental analysis, calcd (%) for 1 β (C₅H₁₂NOCdCl₃): C, 18.71; N, 4.36; H, 3.77. Found C, 18.69; N, 4.34; H, 3.49.

Syntheses of 2α and 2β

 $(S-C_5H_{12}NO)$ [CdCl₃] (2α and 2β) were synthesized by similar methods for 1α and 1β , respectively, except *S*-3-hydroxy-piperidine hydrochloride was used in place of *R*-3-hydroxypiperidine hydrochloride. Elemental analysis, calcd (%) for 2α : C, 18.71; N, 4.36; H, 3.77. Found C, 18.38; N, 4.28; H, 3.17. Elemental analysis, calcd (%) for 2β : C, 18.71; N, 4.36; H, 3.77. Found C, 18.68; N, 4.34; H, 3.53.

The phase purities were confirmed by matching the PXRD patterns measured at room temperature to the simulated patterns based on the single-crystal structures measured at 25°C (Figure S1 and S2).

Transformation From 1α to 1β

The powder samples of 1α (5.0 mg) were heated up to 200°C in a thermogravimetric (TG) apparatus with a heating rate of 5°C min⁻¹ under N₂ atmosphere, and kept for 10 minutes at 200°C, then were naturally cooled down to room temperature.

Transformation From 1 β to 1 α

The powder samples of 1β were put into tablet molds with diameters of 13 mm and then pressed by putting weight of 20–65 kg on the top for applying pressures of 1.5–4.8 MPa, and were put into tablet moulds with diameters of 5 mm and then pressed by tablet compression machine for applying pressures of 1.0–5.0 GPa, respectively. After applying the pressure for 10 minutes at room temperature, the phases of the pressed tablets were checked by PXRD patterns.

Transformation From 1 δ to 1 α

The sample of 1δ obtained by heating the powder sample of 1β (5.0 mg) to 220°C in a TG apparatus with a heating rate of 5°C min⁻¹ was thrown into liquid N₂ immediately. After naturally warming up to room temperature, the obtained sample of 1α was checked by PXRD patterns.

Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction data were collected on a Rigaku XtaLAB P300DS with Mo-K α radiation ($\lambda = 0.71073$ Å) for $\mathbf{1\alpha}$, $\mathbf{2\alpha}$, and $\mathbf{2\beta}$ at 25°C, on a Rigaku R-AXIS SPIDER IP diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) for $\mathbf{1\beta}$ at 25°C, and on a Rigaku SuperNova diffractometer for $\mathbf{1\delta}$ and $\mathbf{2\delta}$ with Cu-K α radiation ($\lambda = 1.54184$ Å) at 177°C. Data processing including empirical absorption correction was finished with the *Crystalclear* software package (Rigaku, 2005). The crystal structures were solved with direct methods and then refined by full-matrix least-squares refinements on F^2 with the SHELX software package.^[S1, S2] The atomic displace parameters were refined anisotropically for all non-hydrogen atoms. The positions of all hydrogen atoms were generated geometrically. The crystal structure packing views were drawn with DIAMOND software. Detailed crystallographic data and structure refinement parameters are listed in Table S1. CCDC numbers: 1886374-1886377, 1901972 and 1901973.

Computational Details

Density functional theory (DFT) calculations were carried out by employing a Dmol³ module in Materials Studio 5.5 package. The initial structures are taken directly from the single-crystal X-ray data of 1α and 1β at 25°C, which were geometrically optimized with the cell parameters fixed, by using the generalized gradient approximation (GGA) with Perdew-Becke-Ernzerhof (PBE) exchange-correlation function. The double numerical plus polarization (DNP) basis set was used for the non-metal atoms. An accurate DFT Semi-core Pseudopots (DSPP) was employed for the cadmium atom. The total energies of the final optimized structures were used for the comparison.

Powder X-ray Diffraction (PXRD)

The PXRD patterns were collected in the range of $2\theta = 5^{\circ}-70^{\circ}$ with a step size of 0.02°, performed on a Bruker D8 ADVANCE X-ray powder diffractometer (Cu-K α , $\lambda = 1.54056$ Å) at 25–205°C.

Thermal Measurements

Differential scanning calorimeter (DSC) measurements were carried out with a TA DSC Q2000 instrument by heating and cooling runs with a rate of 5°C min⁻¹. The sample was loaded into an aluminum pan under flowing nitrogen at atmospheric pressure. Thermogravimetric (TG) analysis was conducted using a TA Q50 system with a heating rate of 10° C min⁻¹ under the nitrogen atmosphere.

Dielectric Constant Measurement

A pressed-powder pellet sample of 1α pasted with silver conducting glue as the electrodes was used in dielectric measurements, pellets with 12 mm in diameter and 0.2 mm thick were prepared by pressing microcrystal samples at 433 MPa. The temperature-dependent dielectric constant was measured on a TH2828A Impedance Analyzer at different frequencies from 2.5 kHz to 1 MHz, with the AC field amplitude of 1 V, and a temperature heating/cooling rate of 3° C min⁻¹ in a Mercury iTC cryogenic environment controller of Oxford Instrument.

Second Harmonic Generation (SHG) Measurement

Variable-temperature SHG experiment was carried out by powder samples on an XPL 1064-200 Instruments, using an Nd:YAG laser (1064 nm) staring on a powder sample of 1α .

Elemental Analyses

Elemental (C, H, and N) analyses were performed on an Elementar Vario EL Cube elemental analyzer.

Fourier Transform Infrared (FT-IR) Spectra Measurement

FT-IR spectra were obtained from KBr pellets on a Bruker Tensor 27 FT-IR spectrometer in the 600-4000 cm⁻¹ region in a Mercury iTC cryogenic environment controller of Oxford Instrument.

Hirshfeld Surface Analysis

Hirshfeld surfaces and 2D fingerprint plots were produced using CrystalExplorer 17 based on the results of single-crystal structures, all bond lengths to hydrogen atoms were normalized to typical neutron bond lengths (*i.e.*, C–H = 1.083 Å, O–H =0.983 Å, N–H = 1.009 Å) when calculating the Hirshfeld surfaces by CrystalExplorer.^[S3-S5]

	1α	1β	18	2α	2β	2δ
Chemical formula	$(R-C_5H_{12}NO)[CdCl_3]$			(S-C ₅ H ₁₂ NO)[CdCl ₃]		
Formula weight	320.92	320.92	320.92	320.92	320.92	320.92
T∕°C	25(2)	25(2)	177(2)	25(2)	25(2)	177(2)
Crystal system	orthorhombic	orthorhombic	hexagonal	orthorhombic	orthorhombic	hexagonal
Space group	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>P</i> 6 ₃ 22	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$	<i>P</i> 6 ₃ 22
<i>a</i> / Å	10.1144(3)	9.3179(6)	9.481(4)	10.1085(3)	9.2835(3)	9.448(1)
<i>b</i> / Å	14.5189(5)	15.543(1)	9.481(4)	14.5205(4)	15.4731(5)	9.448(1)
<i>c</i> / Å	6.7661(2)	6.8068(5)	6.755(2)	6.7609(2)	6.7890(3)	6.7395(5)
$V/\text{\AA}^3$	993.60(5)	985.8(1)	525.8(3)	992.37(5)	975.20(6)	521.0(1)
Ζ	4	4	2	4	4	2
$ ho_{ m calc}$ / (g cm ⁻³)	2.145	2.162	2.027	2.148	2.186	2.046
μ / mm ⁻¹	2.951	2.975	23.261	2.955	3.007	23.477
Reflns. collected	6118	13016	2090	4760	8071	1798
Independent reflns.	1950	2235	285	1931	2295	165
$R_1^{[a]}, w R_2^{[b]} [I \ge 2\sigma(I)]$	0.0400, 0.0929	0.0298, 0.0778	0.0408, 0.0979	0.0286, 0.0731	0.0561, 0.1538	0.0307,0.0796
$R_1^{[a]}, w R_2^{[b]}$ (all data)	0.0424, 0.1033	0.0307, 0.0783	0.0675, 0.1197	0.0359, 0.0760	0.0668, 0.1936	0.0369, 0.0857
Flack	-0.01(7)	0.03(6)	0.1(7)	-0.03(4)	0.1(2)	-0.3(4)
GOF on F^2	1.173	1.138	1.078	1.105	1.132	1.208
CCDC numbers	1886374	1886375	1901972	1886376	1886377	1901973

Table S1. Crystallographic parameters for 1α , 1β , 2α , 2β at 25° C, 1δ , 2δ at 177° C.

[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|;$

[b] $wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\right]^{1/2}$.

	1α	1β	1δ	2α	2β	2δ
Chemical formula		$(R-C_5H_{12}NO)[CdCl_3]$			(S-C ₅ H ₁₂ NO)[CdCl ₃]	
T / °C	25(2)	25(2)	177(2)	25(2)	25(2)	177(2)
Cd–Cl	2.6145(9)-2.6671(7)	2.6032(9)-2.6868(9)	2.645(3)	2.6135(9)-2.667(8)	2.592(3)-2.679(2)	2.638(4)
cis Cl–Cd–Cl	80.69(3)-100.68(4)	81.55(3)-99.61(3)	83.59(7)-96.41(7)	80.66(3)-100.67(4)	81.67(8)-99.75(8)	83.6(1)-96.4(1)
trans Cl-Cd-Cl	175.20(3)-176.53(1)	178.52(1)-178.67(3)	180.0	175.15(3)-176.55(1)	178.57(3)-178.64(8)	180.0
Cd…Cd (inter-chain)	8.8387(4)-10.1144(5)	9.0135(6)- 9.3179(7)	9.481(4)	8.8377(5)-10.1085(5)	8.976(1)-9.284(1)	9.448(1)
Cd…Cd (intra-chain)	3.3868(1)	3.4041(3)	3.3775(8)	3.3842(1)	3.3952(2)	3.3697(2)
Cd–Cd–Cd	174.59(2)	177.64(1)	180.0	174.60(2)	177.71(4)	180
Cd–Cl–Cd	79.11(2)-80.41(2)	79.30(2)-81.31(2)	79.37(9)	79.07(2)-80.41(3)	79.27(7)-81.46(7)	79.4(1)

 Table S2. Selected bond distances (Å), atomic distances (Å) and bond angles (°).

D	Н	А	<i>d</i> (D-H)/Å	<i>d</i> (H-A)/Å	<i>d</i> (D-A)/Å	D-H-A/°
1α						
N1	H1B	$O1^{[a]}$	0.90	2.27	3.038(5)	143.2
N1	H1A	C12	0.90	2.63	3.483(3)	157.4
01	H1	Cl1 ^[b]	0.82	2.40	3.137(3)	150.7
1β						
N1	H1A	$O1^{[c]}$	0.90	2.16	2.982(5)	150.7
01	H1	C12	0.82	2.40	3.193(4)	162.6
2a						
N1	H1B	$O1^{[d]}$	0.900	2.273	3.038(5)	142.71
N1	H1A	Cl2 ^[e]	0.900	2.628	3.475(3)	157.23
01	H1	C13 ^[f]	0.820	2.401	3.137(3)	149.81
2β						
N1	H1B	O1 ^[g]	0.900	2.127	2.955(5)	152.41
01	H1	C12 ^[h]	0.820	2.417	3.186(4)	156.44

Table S3. Hydrogen bonds for 1α and 1β at 25° C.

[a] (-x+3/2, -y+1, z-1/2); [b] (-x+3/2, -y+1, z+1/2); [c] (x+1/2, -y+1/2, -z+2); [d] (-x+3/2, -y+1, z-1/2); [e] (x+1, y, z); [f] (-x+1/2, -y+1, z+1/2); [g] (x-1/2, -y+1/2, -z+2); [h] (x+1, y, z).

Figure S1. The simulated and experimental PXRD patterns of 1α and 1β at room temperature.

Figure S2. The simulated and experimental PXRD patterns of 2α and 2β at room temperature.

Figure S3. Single crystals of 1α (left) and 1β (right).

Figure S4. Structure of hexagonal inorganic perovskite oxides, as exemplified by BaNiO₃.

Figure S5. (a) The structure of *R*-hpip⁺ and *S*-hpip⁺ cations. (b) Overlap of the homochiral organic cations in 1α (purple) and 1β (cyan), and those in 2α (rose red) and 2β (orange). (c) The enantiomorphic relationship between 1α and 2α , all hydrogen atoms are omitted for clarity. (d) The enantiomorphic relationship between 1β and 2β , all hydrogen atoms are omitted for clarity.

Figure S6. TG curves for 1a and 2a.

Figure S7. DSC curves for 2 with two heating-cooling runs starting from 2a.

Figure S8. Simulated PXRD patterns of 1α , 1β , 1δ , and experimental PXRD patterns for *insitu* variable-temperature measurement starting from 1α sample at 30°C, 150°C, 185°C and cooling back to 30°C, and for the samples quenched from 220°C and pressed 1β under 4.8 MPa.

Figure S9. A heating-cooling run of *in situ* variable-temperature PXRD patterns measured starting from the 1α form.

Figure S10. The simulated and experimental PXRD patterns of 1α and 1β kept at ambient temperature and pressure for 21 and 15 months, respectively.

Figure S11. The PXRD patterns measured at ambient pressure for the samples after grinding 1β sample by hand for 5 minutes, and pressing 1β sample by applying different external pressures for 10 minutes.

To check the repeatability of the 1α and 1β forms could be obtained by quenching and normal cooling of a high-temperature phase 1δ , respectively, two cycles were performed by heating 1α to 220°C and normal cooling to room temperature (*i.e.*, yielding 1β) and then heated again to 220°C and quenched by liquid nitrogen, then back to room temperature (*i.e.*, yielding 1α). All the PXRD patterns were measured for the resulted samples at ambient temperature and ambient pressure.

Figure S12. Repeatability of the 1α and 1β forms obtained by quenching and normal cooling of a high-temperature phase 1δ .

To check the repeatability of the heat-and-pressure-induced phase transition between the 1α and 1β forms, four heat-and-pressure cycles were performed by heating 1α to 220°C and normal cooling to room temperature (*i.e.*, yielding 1β) and then applying external pressure of 5.0 GPa on 1β at room temperature for 10 minutes (*i.e.*, yielding 1α). All the PXRD patterns were measured for the resulted samples at ambient temperature and ambient pressure.

Figure S13. Repeatability of the heat-and-pressure-induced phase transition between the 1α and 1β .

Figure S14. Variable-temperature PXRD patterns of four heating-cooling cycles starting from 1α , confirming the reversible thermal-induced transitions for 1.

Figure S15. Variable-temperature PXRD patterns of four heating-cooling cycles starting from 2α , confirming the reversible thermal-induced transitions for 2.

Figure S16. Overlapping the inorganic chains in 1α (purple), 1β (cyan) and 1δ (red) viewed along the *a*-, *b*-, and *c*-axis in space group $P2_12_12_1$, respectively.

Figure S17. Overlap of unit cells of 1δ (red) with (a) 1α (purple) and (b) 1β (cyan), respectively. All hydrogen atoms are omitted for clarity.

Figure S18. Overlap of unit cells of 1α (purple) and 1β (cyan) viewing along the *c*-axis (a) and *a*-axis (b). All hydrogen atoms are omitted for clarity.

Figure S19. Hirshfeld surface for the organic cations in 1α (a, c, e) and 1β (b, d, f) at 25°C, for the specific short contacts of H···Cl (a, b), H···O and O···H (c, d), H···H (e, f), with d_i and d_e ranging from -0.4 to 1.1 Å.

Figure S20. FTIR spectra of 1α and 1β (obtained by *in situ* heating 1α up to 177°C and then normally cooled) at 25°C.

Figure S21. Real (a, c) and imaginary (b, d) part of the dielectric constants on a pelleted sample of **1** at different frequencies from 2.5 kHz to 1 MHz on heating (a, b) and cooling (c, d) processes measured starting from **1** α . Inset (a): Plot of ε' vs. temperature of heating mode from 87°C to 147°C for **1** α .

References

[S1] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

[S2] G. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.

[S3] M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17 (2017). University of Western Australia.

[S4] M. A. Spackman and J. J. McKinnon, CrystEngComm, 2002, 4, 378-392.

[S5] J. J. McKinnon, D. Jayatilaka and M. A. Spackman, Chem. Commun., 2007, 37, 3814-3816.