Phosphine-mediated sequential annulations of allenyl ketone and isocyanide: a bicyclization strategy to access furan-fused eight-membered ring and spirocycle Bingxiang Xue,† Shikuan Su,† Yongmei Cui,*,† Youwen Fei,† Xueshun Jia,†,‡ Jian Li,*,† and Jianhui Fang

E-mail: ymcui@shu.edu.cn; lijian@shu.edu.cn

Supporting Information

Table of Contents

L	Genral Information	S 2
2	General Procedure	S2
3	Characterization Data	S 3
	Spectroscopic Data of All Compounds	S 3
4	Preliminary Mechanistic Study and Control Experiment	S16
5	¹ H NMR and ¹³ C NMR Spectra of All Compounds	S19

[†] Department of Chemistry, Center for Supramolecular Chemistry and Catalysis, College of Sciences & Institute for Sustainable Energy, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China.

[‡] State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

1 General Information

The NMR spectra were recorded on Bruker AC-500 spectrometer (500 MHz for ¹H NMR and 125 MHz for ¹³C NMR) with CDCl₃ as the solvent and TMS as internal reference. ¹H NMR spectral data were reported as follows: chemical shift (δ, ppm), multiplicity, integration, and coupling constant (Hz). ¹³C NMR spectral data were reported in terms of the chemical shift. The following abbreviations were used to indicate multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet. Low-resolution mass spectra were obtained on a Shimadzu LCMS-2010EV spectrometer in ESI mode and reported as m/z. High-resolution mass spectra (HRMS) were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument. Melting points were obtained on a X-4 digital melting point apparatus without correction. Purification of products was accomplished by column chromatography packed with silica gel. Unless otherwise stated, all reagents were commercially purchased and used without further purification. Enantiomeric excesses were determined by chiral HPLC using a Shimadzu instrument.

2 General Procedure

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide 1 (0.5 mmol), allenyl ketone 2 (0.5 mmol) and triphenylphosphine (1.0 equiv.) in THF (5.0 mL) at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 130 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product 3-4.

3 Characterization Data

CO₂Et

(3a): 90.4 mg, 75% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.96 (d, J = 8.8 Hz, 2H), 7.64-7.61 (m, 4H), 7.54-7.50 (m, 1H), 7.41 (td, J = 7.7, 3.8 Hz, 4H), 7.27 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.9 Hz, 2H), 6.66 (t, J = 8.4 Hz, 1H), 4.79 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H),

2.64-2.55 (m, 4H), 2.23 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.0, 166.5, 151.7, 145.4, 145.2, 144.7, 138.1, 137.9, 131.9, 131.3, 131.2, 129.3, 128.4, 128.1, 126.9, 125.6, 120.8, 118.2, 117.1, 112.7, 60.3, 49.2, 23.3, 22.8, 14.3, 9.9. HRMS (ESI): calcd. for $C_{32}H_{30}NO_4 [M+H]^+ 492.2169$, Found: 492.2158. R_f Value: 0.40 (PE/EA – 5:1).

(**3b**): 83.0 mg, 65% yield, white solid: m.p. 194-195 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95 (d, J = 8.9 Hz, 2H), 7.53 (t, J = 8.5 Hz, 4H), 7.22 (d, J = 8.0 Hz, 4H), 6.77 (d, J = 8.9 Hz, 2H), 6.63 (t, J = 8.5

Hz, 1H), 4.77 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.63-2.53 (m, 4H), 2.40

(s, 3H), 2.37 (s, 3H), 2.21 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.8, 196.5, 151.9, 145.6, 144.4, 144.2, 142.7, 138.2, 136.7, 135.1, 131.2, 129.6, 129.1, 128.8, 128.6, 125.6, 120.7, 118.2, 116.4, 112.7, 60.3, 49.4, 23.2, 22.9, 21.5, 21.1, 14.3, 9.9. HRMS (ESI): calcd. for $C_{34}H_{34}NO_4$ [M+H]⁺ 520.2482, Found: 520.2473. R_f Value: 0.42 (PE/EA – 5:1).

(3c): 63.0 mg, 40% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95-7.92 (m, 2H), 7.66-7.63 (m, 2H), 7.56-7.53 (m, 2H), 6.95-6.88 (m, 4H), 6.77-6.74 (m, 2H), 6.55 (t, J = 8.5 Hz, 1H),

4.73 (s, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.84 (s, 3H), 3.82 (s, 3H), 2.62-2.51 (m, 4H), 2.19 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.9, 166.6, 162.9, 158.6, 151.9, 145.5, 144.2, 142.6, 138.2, 131.9, 131.2, 130.2, 127.1, 124.2, 120.7, 118.2, 115.6, 113.9, 113.4, 112.7, 60.3, 55.4, 55.2, 49.7, 23.2, 23.0, 14.4, 9.9. HRMS (ESI): calcd. for C₃₄H₃₄NO₆ [M+H]⁺ 552.2381, Found: 552.2380. R_f Value: 0.50 (PE/EA – 2:1).

(3d): 93.3 mg, 57% yield, white solid: m.p. 95-96 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.98 (d, J = 8.4 Hz, 2H), 7.74-7.71 (m, 4H), 7.67-7.61 (m, 8H), 7.47 (q, J = 7.2 Hz, 4H), 7.42-7.35 (m, 2H), 6.81 (d, J = 8.5 Hz, 2H), 6.72 (t, J = 8.2 Hz, 1H), 4.82 (s, 2H),

4.35 (q, J = 7.1 Hz, 2H), 2.68-2.61 (m, 4H), 2.29 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.7, 166.5, 151.8, 145.2, 144.9, 144.8, 144.7, 140.5, 139.8, 139.5, 138.3, 136.5, 131.3, 130.3, 130.1, 128.9, 128.7, 128.1, 127.3, 127.1, 126.9, 126.8, 125.9, 120.1, 118.4, 117.4, 112.7, 60.3, 49.4, 23.4, 22.9, 14.4, 10.1. HRMS (ESI): calcd. for C₄₄H₃₈NO₄ [M+H]⁺ 644.2795, Found: 644.2792. R_f Value: 0.38 (PE/EA – 5:1).

(3e): 44.2 mg, 32% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95-7.92 (m, 2H), 7.56-7.52 (m, 4H), 7.40-7.35 (m, 4H), 6.74-6.71 (m, 2H), 6.62 (t, J = 8.3 Hz, 1H), 4.74 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 2.63-2.54 (m, 4H), 2.20 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.8, 166.5, 151.6, 145.3, 144.9, 144.5, 138.4, 138.1, 136.1, 132.7, 131.3, 130.8, 129.7, 128.7, 128.5, 126.8, 121.1, 118.4, 117.7, 112.7, 60.4, 49.2, 23.4,

22.8, 14.4, 10.0. HRMS (ESI): calcd. for $C_{32}H_{28}Cl_2NO_4$ [M+H]⁺ 560.1390, Found: 560.1384. R_f Value: 0.46 (PE/EA – 5:1).

$$F_3C$$
 CO_2Et CF_3

(3f): 71.9 mg, 50% yield, white solid: m.p. 78-79 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.96 (d, J = 8.8 Hz, 2H), 7.69 (m, 8H), 6.76 (d, J = 8.8 Hz, 2H), 6.69 (t, J = 8.0 Hz, 1H), 4.81 (s, 2H), 4.34 (q, J = 7.1 Hz, 2H), 2.65-2.62 (m, 4H), 2.27 (s, 3H),

1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.8, 166.4, 151.4, 147.0, 145.6, 144.1, 141.2, 138.2, 134.5, 133.3 (q, J = 32.6 Hz), 131.4, 129.5, 128.5 (q, J = 32.3 Hz), 125.5 (q, J = 3.8 Hz), 125.4, 125.2 (q, J = 3.6 Hz), 124.1 (q, J = 270.2 Hz), 123.6 (q, J = 271.1 Hz), 121.3, 119.3, 118.6, 112.8, 60.4, 48.9, 23.5, 22.6, 14.3, 10.1. HRMS (ESI): calcd. for $C_{34}H_{28}F_6NO_4$ [M+H]⁺ 628.1917, Found: 628.1925. R_f Value: 0.48 (PE/EA – 5:1).

(3g): 90.4 mg, 63% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.96-7.93 (m, 2H), 7.75 (t, J = 1.7 Hz, 1H), 7.66 (t, J = 1.7 Hz, 1H), 7.64-7.62 (m, 1H), 7.54-7.50 (m, 2H), 7.39-7.37 (m, 1H), 7.30-7.24 (m, 2H), 6.75-6.72 (m, 2H), 6.64 (t, J = 8.3 Hz, 1H), 4.74 (s,

2H), 4.33 (q, J = 7.1 Hz, 2H), 2.64-2.57 (m, 4H), 2.23 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.2, 166.4, 151.4, 146.2, 144.9, 144.0, 139.7, 137.9, 134.7, 133.1, 132.2, 131.3, 129.9, 129.7, 128.3, 127.8, 123.9, 122.6, 122.3, 121.1, 118.4, 118.3, 112.7, 60.3, 48.8, 23.5, 22.5, 14.3, 10.0. HRMS (ESI): calcd. for $C_{32}H_{28}Br_2NO_4$ [M+H]⁺ 648.0380, Found: 648.0380. R_f Value: 0.47 (PE/EA – 5:1).

(**3h**): 79.2 mg, 55% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.96-7.93 (m, 2H), 7.59 (t, J = 1.8 Hz, 1H), 7.51 (t, J = 1.7 Hz, 1H), 7.49-7.45 (m, 3H), 7.35-7.29 (m, 2H), 7.22-7.20 (m, 1H), 6.76-6.73 (m, 2H), 6.64 (t, J = 8.3 Hz, 1H), 4.74 (s, 2H), 4.32 (q, J = 7.1

Hz, 2H), 2.64-2.56 (m, 4H), 2.22 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 196.4, 166.4, 151.4, 146.2, 144.9, 144.1, 139.5, 137.9, 134.4, 134.3, 132.8, 131.8, 131.3, 129.7, 129.5, 129.3, 127.3, 126.8, 125.3, 123.5, 121.1, 118.5, 118.3, 112.7, 60.3, 48.8, 23.5, 22.5, 14.3, 10.0. HRMS (ESI): calcd. for $C_{32}H_{28}Cl_2NO_4$ [M+H]⁺ 560.1390, Found: 560.1379. R_f Value: 0.35 (PE/EA – 5:1).

(3i): 85.6 mg, 60% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95 (d, J = 9.0 Hz, 2H), 7.31 (td, J = 7.9, 2.9 Hz, 2H), 7.21 (d, J = 7.9 Hz, 1H), 7.16-7.14 (m, 3H), 7.06-7.04 (m, 1H), 6.82 (dd, J = 8.0, 2.2 Hz, 1H), 6.76 (d, J = 9.0 Hz, 2H), 6.67 (t, J = 8.4 Hz, 1H),

4.77 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 2.63-2.54 (m, 4H), 2.22 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.7, 166.4, 159.6, 159.3, 151.7, 145.3, 145.2, 144.6, 139.2, 138.0, 132.5, 131.2, 129.5, 129.1, 121.9, 120.8, 118.3, 118.1, 118.0, 117.4, 114.0, 112.7, 111.0, 60.3, 55.3, 55.2, 49.1, 23.3, 22.7, 14.3, 10.0. HRMS (ESI): calcd. for $C_{34}H_{34}NO_6 [M+H]^+$ 552.2381, Found: 552.2394. R_f Value: 0.21 (PE/EA – 5:1).

(**3j**): 70.2 mg, 53% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.96-7.93 (m, 2H), 7.50 (td, J = 7.5, 1.8 Hz, 1H), 7.47-7.43 (m,

1H), 7.37 (td, J = 7.5, 1.8 Hz, 1H), 7.33-7.29 (m, 1H), 7.21-7.17 (m, 2H), 7.16-7.08 (m, 2H), 6.76-6.72 (m, 3H), 4.79 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 2.61-2.52 (m, 4H), 2.03 (d, J = 2.9 Hz, 3H), 1.36 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 195.1, 166.5, 160.4, 159.9, 158.4, 158.0, 147.8, 145.9, 140.7, 139.3, 132.5, 132.4, 131.3, 130.2, 130.1, 130.0, 129.5, 129.4, 127.2, 127.1, 124.2, 124.1, 124.0, 120.9, 119.9, 119.2, 119.0, 117.8, 116.1, 116.0, 112.7, 60.3, 48.6, 23.3, 22.7, 9.6, 9.5. HRMS (ESI): calcd. for C₃₂H₂₈F₂NO₄ [M+H]⁺ 528.1981, Found: 528.1988. R_f Value: 0.34 (PE/EA – 5:1).

(3k): 55.3 mg, 33% yield, white solid: m.p. 92-93 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.08 (d, J = 4.8 Hz, 2H), 8.01-7.98 (m, 2H), 7.88-7.85 (m, 5H), 7.84-7.80 (m, 2H), 7.75 (dd, J = 8.5, 1.6 Hz, 1H), 7.59-7.55 (m, 1H), 7.52-7.45 (m, 3H), 6.86-6.83 (m, 2H), 6.73

(t, J = 8.5, 1H), 4.87 (s, 2H), 4.35 (q, J = 7.1 Hz, 2H), 2.70-2.60 (m, 4H), 2.36 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.1, 166.5, 151.8, 145.7, 145.0, 144.9, 138.4, 135.1, 135.0, 133.3, 132.2, 132.1, 131.3, 130.8, 129.2, 128.8, 128.2, 128.1, 127.7, 127.6, 126.7, 126.3, 125.9, 125.4, 124.3, 123.8, 120.9, 118.6, 117.7, 112.8, 60.4, 49.3, 23.5, 22.8, 14.4, 10.2. HRMS (ESI): calcd. for C₄₀H₃₄NO₄ [M+H]⁺ 592.2482, Found: 592.2471. R_f Value: 0.28 (PE/EA – 5:1).

(31): 63.4 mg, 46% yield, white solid: m.p. 66-67 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.95 (d, J = 8.9 Hz, 2H), 7.74-7.73 (m, 2H), 7.67-7.65 (m, 2H), 7.57-7.54 (m, 1H), 7.47-7.42 (m, 4H), 7.30 (t, J = 7.4 Hz, 1H),

6.82 (d, J = 9.0 Hz, 2H), 6.45-6.41 (m, 1H), 5.52 (q, J = 6.8, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.84-2.79 (m, 1H), 2.75-2.67 (m, 2H), 2.58-2.52 (m, 1H), 2.43-2.36 (m, 1H), 2.33-2.27 (m, 1H), 1.36 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.5 Hz, 3H), 1.26 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 199.1, 166.6, 151.9, 145.3, 144.2, 143.4, 140.2, 138.1, 132.4, 131.4, 131.3, 129.6, 128.6, 128.3, 127.1, 125.6, 123.6, 120.9, 119.3, 112.5, 60.3, 54.4, 23.7, 22.3, 19.9, 17.9, 14.5, 14.4. HRMS (ESI): calcd. for $C_{34}H_{34}NO_4$ [M+H]⁺ 520.2482, Found: 520.2475. R_f Value: 0.46 (PE/EA – 5:1).

(3**m**): 72.9 mg, 65% yield, white solid: m.p. 83-84 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.70 (d, J = 8.2 Hz, 2H), 7.66 (dd, J = 7.0, 1.2 Hz, 2H), 7.57-7.54 (m, 1H), 7.45 (t, J = 7.8 Hz, 4H), 7.35-7.29 (m, 3H), 6.81 (dd, J = 8.7, 1.7 Hz, 2H), 6.71-6.68 (m, 1H), 4.80 (s, 2H), 2.70 (s, 4H), 1.37 (s, 9H).

¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.4, 146.0, 145.4, 145.2, 144.7, 141.5, 139.0, 138.1, 131.7, 131.6, 129.3, 128.4, 128.0, 126.5, 125.9, 125.5, 117.7 117.0, 113.2, 48.9, 33.8, 31.4, 23.9, 22.7, 10.0. HRMS (ESI): calcd. for $C_{33}H_{34}NO_2$ [M+H]⁺ 476.2584, Found: 476.2580. R_f Value: 0.50 (PE/EA – 6:1).

(3n): 62.9 mg, 58% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.66-7.61 (m, 4H), 7.54-7.51 (m, 1H), 7.42 (td, J = 7.8, 3.1 Hz, 4H), 7.28-7.25 (m, 1H), 7.09-7.07 (m, 2H), 6.73-6.72 (m, 2H), 6.66-6.65 (m, 1H), 4.75 (s, 2H), 2.65 (d, J = 4.0 Hz, 4H), 2.30 (s, 3H), 2.25 (s, 3H). ¹³C NMR

 $(125 \ MHz, CDCl_3): \ \delta \ (ppm) = 198.5, \ 146.2, \ 145.6, \ 145.2, \ 144.7, \ 139.0, \ 138.2, \ 131.8, \ 131.6, \ 129.7, \ 146.2, \ 14$

129.4, 128.4, 128.1, 128.0, 126.6, 125.5, 117.6, 117.1, 113.6, 49.1, 23.8, 22.8, 20.3, 10.0. HRMS (ESI): calcd. for C₃₀H₂₈NO₂ [M+H]⁺ 434.2115, Found: 434.2102. R_f Value: 0.50 (PE/EA – 5:1).

(30): 54.6 mg, 43% yield, white solid: m.p. 59-60 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.63 (dd, J = 20.5, 7.4 Hz, 4H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 4H), 7.26 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.75 (d, J = 8.6 Hz, 2H), 6.66-6.64 (m, 1H), 4.74 (s, 2H), 2.91-2.83 (m, 1H), 2.65 (s, 4H), 2.25 (s, 3H), 1.25 (d, J = 6.9, 6H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.4, 146.1, 145.8, 145.2, 144.7, 139.3, 139.0, 138.2, 131.7, 131.6, 129.4, 128.4, 128.0, 127.0, 126.6, 125.5, 117.7, 117.0, 113.6, 49.0, 33.0, 24.1, 23.9, 22.8, 10.0. HRMS (ESI): calcd. for C₃₂H₃₂NO₂ [M+H]⁺ 462.2428, Found: 462.2422. R_f Value: 0.48 (PE/EA – 10:1).

Cl (3**p**): 75.3 mg, 66% yield, white solid: m.p. 73-74 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.64-7.60 (m, 4H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (td, J = 7.7, 3.0 Hz, 4H), 7.27 (t, J = 7.5 Hz, 1H), 7.21-7.18 (m, 2H), 6.72-6.70 (m, 2H), 6.66 (t, J = 8.0 Hz, 1H), 4.71 (s, 2H), 2.65-2.58 (m, 4H), 2.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.3, 146.6, 145.4, 145.3, 145.1, 138.5, 138.0, 131.9, 131.4, 129.4, 129.1, 128.5, 128.2, 126.8, 125.6, 123.9, 118.0, 117.1, 114.8, 49.3, 23.7, 22.8, 10.0. HRMS (ESI): calcd. for C₂₉H₂₅CINO₂ [M+H]⁺ 454.1568, Found: 454.1565. R_f Value: 0.46 (PE/EA – 5:1).

Ph O N CI (**3q**): 68.3 mg, 53% yield, white solid: m.p. 61-62 °C. ¹H NMR (500 MHz, 9)

CDCl₃): δ (ppm) = 7.65-7.61 (m, 4H), 7.54-7.51 (m, 1H), 7.44-7.40 (m, 4H), 7.30-7.26 (m, 1H), 7.16 (t, J = 8.1 Hz, 1H), 6.83 (dd, J = 7.8, 1.2 Hz, 1H), 6.78 (t, J = 2.1 Hz, 1H), 6.68-6.65 (m, 2H), 4.72 (s, 2H), 2.65-2.59 (m, 4H), 2.24 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.2, 149.2, 145.3, 145.2, 144.9, 138.4, 138.0, 135.1, 131.9, 131.4, 130.2, 129.4, 128.5, 128.1, 126.8, 125.6, 119.0, 118.2, 117.1, 113.6, 111.7, 49.3, 23.5, 22.8, 10.0. HRMS (ESI): calcd. for C₂₉H₂₅ClNO₂ [M+H] + 454.1568, Found: 454.1575. R_f Value: 0.43 (PE/EA – 5:1).

Me (3**r**): 68.9 mg, 60% yield, white solid: m.p. 56-57°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.65 (dd, J = 18.5, 7.8 Hz, 4H), 7.53 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.6 Hz, 4H), 7.28 (t, J = 7.4, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.70 (t, J = 7.3 Hz, 1H), 6.64 (t, J = 12.3 Hz, 3H), 4.76 (s, 2H), 2.65 (d, J = 3.4 Hz, 4H), 2.33 (s, 3H), 2.26 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.5, 148.0, 146.0, 145.1, 144.9, 139.0, 138.9, 138.2, 131.8, 131.6, 129.4, 129.0, 128.4, 128.1, 126.6, 125.5, 119.9, 117.8, 117.1, 114.2, 110.8, 49.1, 23.6, 22.9, 21.8, 10.1. HRMS (ESI): calcd. for C₃₀H₂₈NO₂ [M+H]⁺ 434.2115, Found: 434.2121. R_f Value: 0.45 (PE/EA – 5:1).

OME (3s): 79.6 mg, 70% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.68-7.64 (m, 4H), 7.55-7.51 (m, 1H), 7.43 (td, J = 7.8, 2.9 Hz, 4H), 7.28 (t, J = 7.4 Hz, 1H), 7.19 (t, J = 8.2 Hz, 1H), 6.67 (t, J = 4.0 Hz, 1H), 6.46-6.43 (m, 2H), 6.40 (t, J = 2.3 Hz, 1H), 4.78 (s, 2H), 3.79 (s, 3H), 2.65 (d, J = 4.1 Hz, 4H), 2.25 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.3, 160.0, 149.3, 145.6, 145.1, 144.9, 138.7, 138.0, 131.7, 131.5, 129.9, 129.3, 128.3, 128.0, 126.6, 125.5, 117.9, 117.0, 106.4, 103.7, 100.2,

55.0, 49.2, 23.4, 22.8, 9.9. HRMS (ESI): calcd. for $C_{30}H_{28}NO_3$ [M+H]⁺ 450.2064, Found: 450.2059. R_f Value: 0.46 (PE/EA – 5:1).

(3t): 77.2 mg, 67% yield, white solid: m.p. 70-71 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.67 (d, J = 7.6 Hz, 2H), 7.63 (d, J = 7.1 Hz, 2H), 7.54-7.51 (m, 1H), 7.42 (t, J = 7.7 Hz, 4H), 7.28 (t, J = 7.4 Hz, 1H), 6.67-6.66 (m, 1H), 6.54 (s, 1H), 6.44 (s, 2H), 4.74 (s, 2H), 2.66-2.65 (m, 4H), 2.29 (s, 6H), 2.27 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 198.5, 148.0, 146.0, 145.1, 144.8, 139.0, 138.8, 138.2, 131.7, 131.6, 129.4, 128.4, 128.1, 126.6, 125.6, 121.0, 117.8, 117.1, 111.5, 49.2, 23.7, 22.9, 21.6, 10.1. HRMS (ESI): calcd. for C₃₁H₃₀NO₂ [M+H]⁺ 448.2271, Found: 448.2261. R_f Value: 0.49 (PE/EA – 7:1).

MeO (3u): 78.2 mg, 68% yield, yellow oil. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.64-7.59 (m, 4H), 7.53 (m, 1H), 7.40 (td, J = 7.8, 3.2 Hz, 4H), 7.27-7.24 (m, 1H), 6.66-6.63 (m, 1H), 6.03-6.02 (m, 1H), 5.97 (q, J = 1.0 Hz, 2H), 4.72 (s, 2H), 3.74 (s, 6H), 2.63-2.62 (m, 4H), 2.21 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 198.4, 161.6, 150.1, 145.6, 145.2, 145.0, 138.8, 138.1, 131.8, 131.6, 129.4, 128.4, 128.1, 126.7, 125.6, 118.0, 117.1, 92.9, 90.8, 55.2, 49.4, 23.5, 22.9, 10.0. HRMS (ESI): calcd. for C₃₁H₃₀NO₄ [M+H]⁺ 480.2169, Found: 480.2169. R_f Value: 0.30 (PE/EA – 5:1).

Me (4a): 65.8 mg, 54% yield, white solid: m.p. 62-63 °C. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.77-7.75 (m, 2H), 7.55-7.52 (m, 1H), 7.47-7.44 (m, 4H),

7.39-7.36 (m, 2H), 7.34-7.31 (m, 1H), 7.06 (d, J = 7.5 Hz, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.81-6.79 (m, 1H), 3.26-3.18 (m, 1H), 2.91 (s, 2H), 2.59-2.52 (m, 1H), 2.18 (s, 6H), 2.10-2.07 (m, 2H), 2.03 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.6, 163.4, 145.7, 145.0, 143.4, 138.4, 135.1, 131.5, 129.7, 129.2, 128.4, 128.2, 128.0, 127.5, 127.4, 127.0, 122.5, 116.2, 48.1, 30.9, 28.5, 22.9, 18.1, 9.2. HRMS (ESI): calcd. for $C_{31}H_{30}NO_2$ [M+H]⁺ 448.2271, Found: 448.2269. R_f Value: 0.50 (PE/EA – 6:1).

(**4b**): 73.3 mg, 50% yield, yellow oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.84 (t, J = 1.7 Hz, 1H), 7.65-7.61 (m, 2H), 7.56 (t, J = 1.7 Hz, 1H), 7.44-7.43 (m, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.03 (d, J = 7.6 Hz, 2H), 6.91 (t, J = 15.0, 1H),

6.78-6.77 (m, 1H), 3.23-3.15 (m, 1H), 2.89-2.79 (m, 2H), 2.58-2.53 (m, 1H), 2.12 (s, 6H), 2.07-2.04 (m, 2H), 1.99 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 195.7, 162.7, 144.6, 144.5, 144.2, 140.3, 134.8, 134.4, 131.9, 131.6, 131.5, 129.8, 129.6, 127.8, 127.6, 127.3, 125.7, 122.7, 122.4, 122.3, 117.5, 48.1, 30.7, 28.4, 23.0, 18.1, 9.2. HRMS (ESI): calcd. for $C_{31}H_{28}Br_2NO_2$ [M+H]⁺ 604.0481, Found: 604.0476. R_f Value: 0.48 (PE/EA – 5:1).

(**4c**): 87.5 mg, 62% yield, white solid: m.p. 80-81 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 8.53 (s, 1H), 8.36 (d, J = 7.1 Hz, 1H), 8.29 (s, 1H), 8.15 (d, J = 7.5 Hz, 1H), 8.01 (d, J = 6.6 Hz, 1H), 7.70 (d, J = 7.2 Hz, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 7.03 (d, J =

7.3 Hz, 2H, 6.91 (t, J = 7.2 Hz, 1H), 6.80 (s, 1H), 3.23 (d, J = 18.8 Hz, 1H), 2.96 (d, J = 17.7 Hz, 1.00 (d), 2.00 (d), 3.20 (d), 3.20

1H), 2.84 (d, J = 17.8 Hz, 1H), 2.61 (d, J = 19.8 Hz, 1H), 2.12-2.07 (m, 11H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 194.7, 162.1, 148.1, 148.0, 145.2, 144.3, 143.9, 139.8, 134.8, 134.6, 132.7, 131.2, 129.6, 129.4, 127.6, 127.2, 125.9, 123.9, 123.1, 123.0, 121.8, 118.9, 48.2, 30.5, 28.2, 23.1, 18.1, 9.3. HRMS (ESI): calcd. for $C_{31}H_{28}N_3O_6$ [M+H]⁺ 538.1973, Found: 538.1976. R_f Value: 0.50 (PE/EA – 2:1).

(4d): 66.9 mg, 51% yield, colorless oil. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.74-7.72 (m, 2H), 7.54-7.51 (m, 1H), 7.46-7.43 (m, 4H), 7.37-7.29 (m, 3H), 7.15 (s, 2H), 7.11-7.08 (m, 1H), 6.83-6.81 (m, 1H), 3.26-3.18 (m, 1H), 3.03-2.95 (m, 2H), 2.91 (d, J = 0.9 Hz, 2H), 2.59-2.53 (m, 1H), 2.11-2.08 (m, 2H), 2.02 (s, 3H), 1.27-1.15 (m, 12H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 195.8, 163.6, 144.6, 144.0, 143.8, 140.0, 134.8, 134.4, 134.3, 131.6, 131.2, 130.2, 129.7, 129.6, 129.5, 129.1, 128.8, 127.4, 127.0, 125.2, 117.7, 115.3, 48.3, 30.7, 28.4, 23.0, 17.9, 9.3. HRMS (ESI): calcd. for $C_{35}H_{38}NO_{2}$ [M+H]⁺ 504.2897, Found: 504.2899. R_{f} Value: 0.49 (PE/EA – 6:1).

(4e): 47.2 mg, 32% yield, white solid: m.p. 172-173 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.73-7.71 (m, 2H), 7.54-7.49 (m, 3H), 7.46-7.43 (m, 2H), 7.39-7.36 (m, 3H), 7.34-7.31 (m, 1H), 7.19-7.16 (m, 1H), 7.07-7.04 (m, 1H), 6.96 (dd, J = 7.8, 1.3 Hz, 1H), 6.85 (d, J = 1.5 Hz, 1H), 3.18-3.11 (m, 1H), 2.96 (d, J = 18.1 Hz, 1H), 2.83 (dd, J = 18.1, 1.6 Hz, 1H), 2.54-2.49 (m, 1H), 2.07-2.05 (m, 2H), 2.03 (s, 3H), 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.3, 162.7, 145.7, 145.6, 144.1, 140.1, 138.5, 135.4, 131.3, 129.8, 129.1, 128.4, 128.3, 128.0, 127.0, 126.1,

126.0, 123.3, 123.0, 116.1, 48.5, 35.0, 29.8, 29.7, 22.8, 9.3. HRMS (ESI): calcd. for C₃₃H₃₄NO₂ [M+H]⁺ 476.2584, Found: 476.2589. R_f Value: 0.50 (PE/EA – 6:1).

Me Ph Br (4f): 78.1 mg, 57% yield, white solid: m.p. 178-179 °C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.73-7.72 (m, 2H), 7.54-7.51 (m, 1H), 7.44 (t, J = 7.5 Hz, 4H), 7.38-7.35 (m, 2H), 7.33-7.30 (m, 1H), 7.17 (s, 2H), 6.78 (d, J = 1.4 Hz, 1H), 3.18-3.10 (m, 1H), 2.87 (s, 2H), 2.57-2.52 (m, 1H), 2.11 (s, 6H), 2.08-2.04 (m, 2H), 2.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.5, 145.6, 144.1, 143.3, 138.3, 135.0, 131.5, 130.1, 129.7, 129.5, 129.2, 128.6, 128.3, 128.1, 126.9, 116.4, 115.1, 48.3, 30.9, 28.5, 22.9, 17.9, 9.2. HRMS (ESI): calcd. for C₃₁H₂₉BrNO₂ [M+H]⁺ 526.1376, Found: 526.1378. R_f Value: 0.50 (PE/EA – 8:1).

Me Br (4g): 92.9 mg, 61% yield, colorless oil. 1 H NMR (500 MHz, CDCl₃): δ (ppm) = 7.65 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.18-7.15 (m, 4H), 6.73 (d, J = 1.2 Hz, 1H), 3.15-3.08 (m, 1H), 2.88-2.80 (m, 2H), 2.55-2.50 (m, 1H), 2.41 (s, 3H), 2.35 (s, 3H), 2.09 (s, 6H), 2.06-2.02 (m, 2H), 1.98 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 197.3, 164.5, 145.7, 144.3, 142.3, 142.2, 138.6, 135.6, 135.1, 130.1, 129.8, 129.5, 129.0, 128.8, 126.9, 126.7, 115.6, 115.1, 48.3, 31.1, 28.7, 22.9, 21.5, 21.3, 17.9, 9.2. HRMS (ESI): calcd. for C₃₃H₃₃BrNO₂ [M+H]⁺ 554.1689, Found: 554.1679. R_f Value: 0.50 (PE/EA – 8:1).

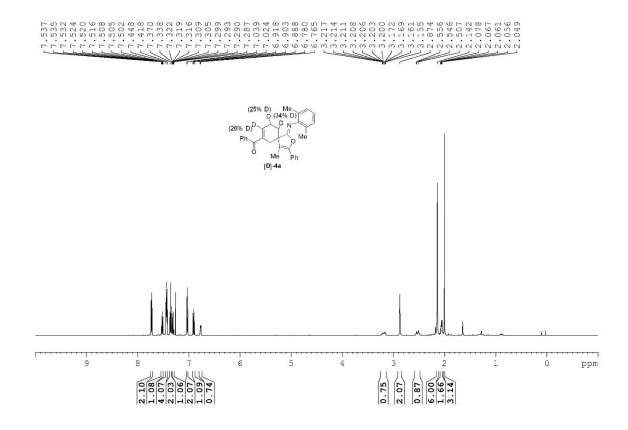
(**4h**): 91.3 mg, 65% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.66 (t, J = 1.7 Hz, 1H), 7.55 (dt, J = 7.8, 1.3 Hz, 1H), 7.49 (dq, J = 8.0, 1.1 Hz, 1H), 7.39-7.38 (m, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.30-7.27 (m, 3H), 7.15 (s, 2H), 6.77 (d, J = 1.6 Hz, 1H), 3.17-3.09

(m, 1H), 2.87-2.77 (m, 2H), 2.57-2.53 (m, 1H), 2.07 (s, 6H), 2.05-2.01 (m, 2H), 1.98 (s, 3H). 13 C NMR (125 MHz, CDCl₃): δ (ppm) = 197.5, 163.1, 145.6, 143.8, 142.6, 138.4, 135.0, 131.4, 129.7, 129.2, 128.4, 128.2, 128.0, 127.0, 123.1, 122.4, 116.2, 48.1, 30.7, 28.4, 28.3, 23.1, 9.2. HRMS (ESI): calcd. for $C_{31}H_{27}BrCl_2NO_2$ [M+H]⁺ 594.0597, Found: 594.0591. R_f Value: 0.47 (PE/EA – 5:1).

(**4i**): 56.7 mg, 45% yield, white solid m.p. 64-65°C. ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.75 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 7.3 Hz, 1H), 7.46-7.43 (m, 4H), 7.36 (t, J = 7.4 Hz, 2H), 7.33-7.30 (m, 1H), 6.87 (s,

2H), 6.78 (s, 1H), 3.21-3.17 (m, 1H), 2.89 (s, 2H), 2.53 (dd, J = 19.7, 4.4 Hz, 1H), 2.29 (s, 3H), 2.13 (s, 6H), 2.06-2.05 (m, 2H), 2.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 197.6, 145.7, 143.4, 142.3, 138.4, 135.1, 131.6, 131.5, 129.8, 129.3, 128.4, 128.2, 128.1, 128.0, 127.2, 127.1, 116.2, 48.1, 31.0, 28.6, 23.0, 20.7, 18.0, 9.2. HRMS (ESI): calcd. for $C_{32}H_{32}NO_2$ [M+H]⁺ 462.2428, Found: 462.2414. R_f Value: 0.50 (PE/EA – 8:1).

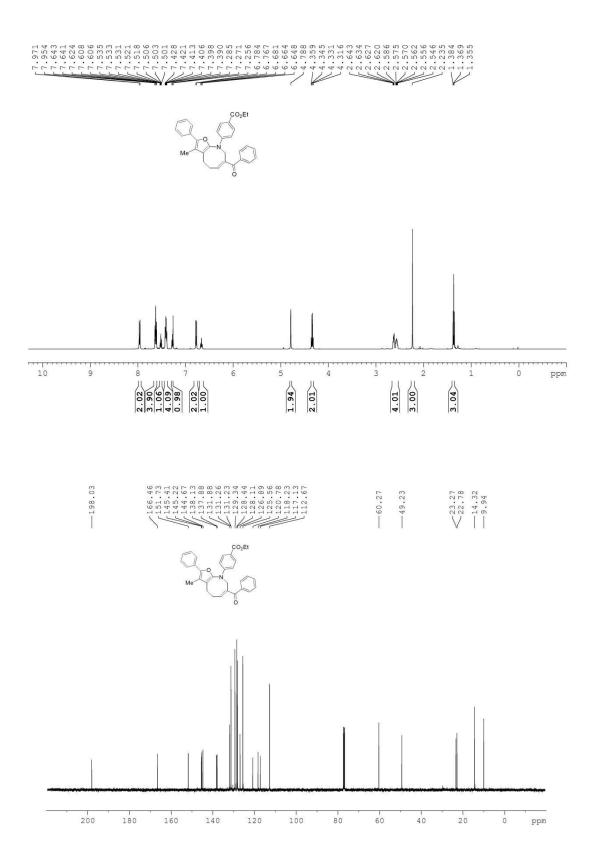
4 Preliminary Mechanistic Study and Control Experiment


a) Reaction for Furan-fused eight-membered ring formaton with D₂O under the optimal conditions

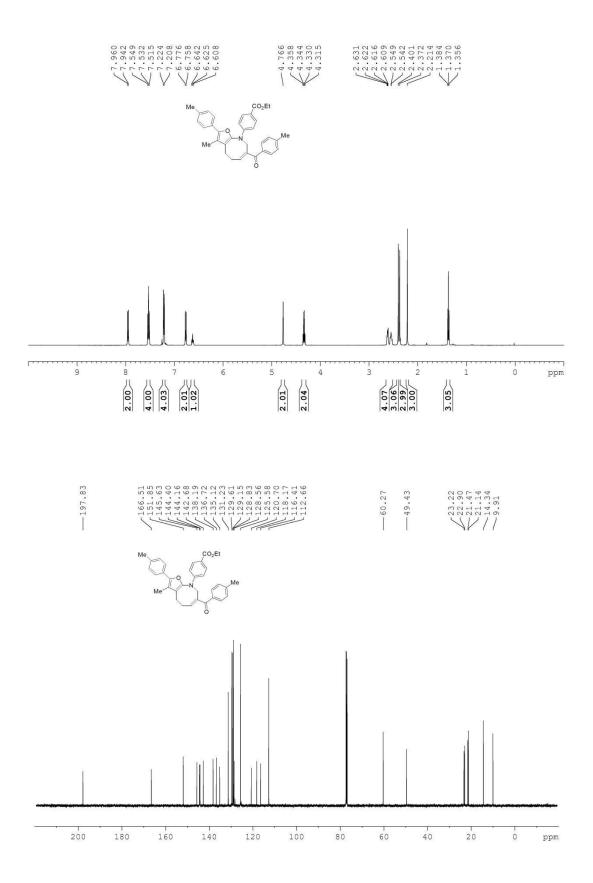
Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide 1e (0.5 mmol), allenyl ketone 2a (0.5 mmol) and triphenylphosphine (1.0 equiv.) in THF (5.0 mL) at room temperature. To this mixture D_2O (2 equiv.) was added. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 130 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product [D]-3p.

b) Reaction for spirocycle formation with D2O under the optimal conditions

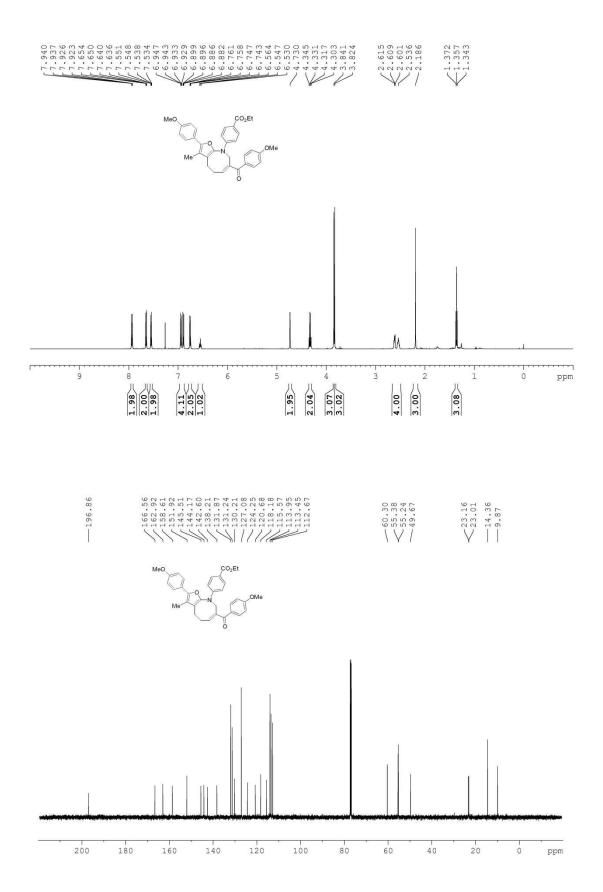
Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide 1k (0.5 mmol), allenyl ketone 2a (0.5mmol) and triphenylphosphine (1.0 equiv.) in THF (5.0 mL) at room temperature. To this mixture D_2O (2 equiv.) was added. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 130 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product [D]-4a.

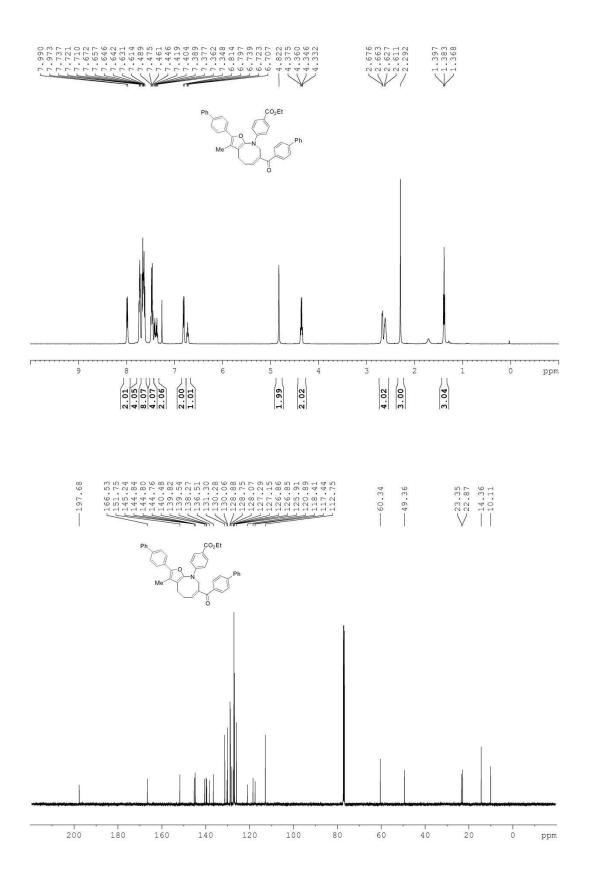


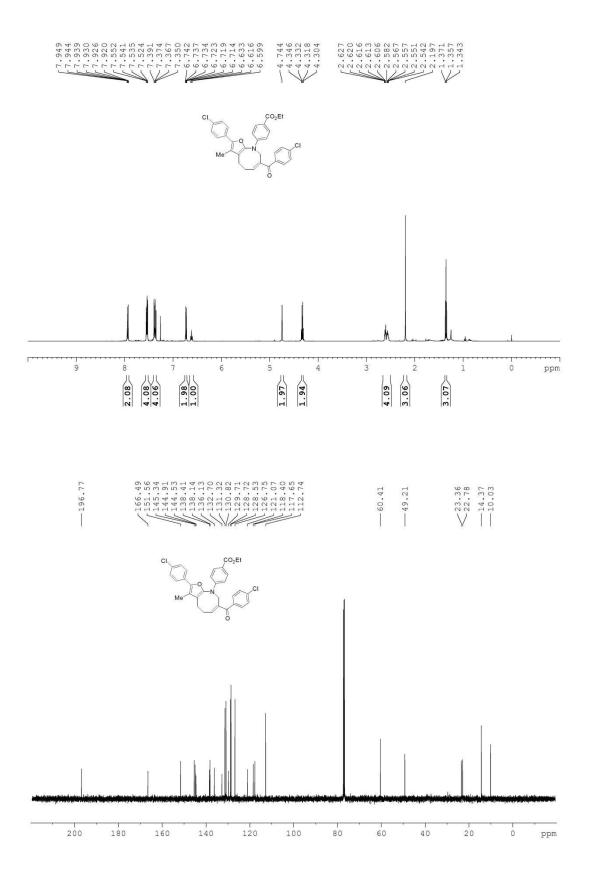
c) Reaction with chiral phosphine for spirocycle formation

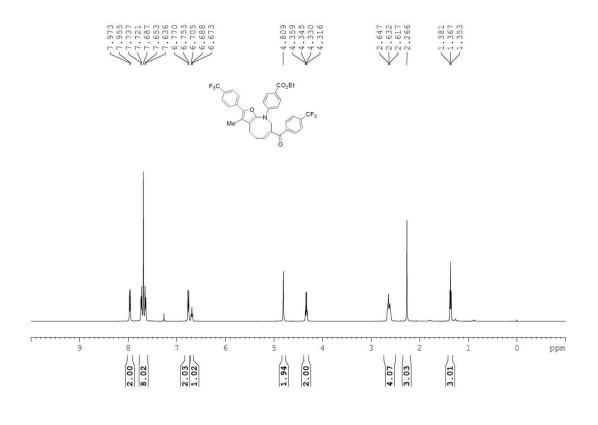

Under air atmosphere, a sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with isocyanide **1n** (0.5 mmol), allenyl ketone **2a** (0.5 mmol) and chiral phosphine (1.0 equiv.) in THF (5.0 mL) at room temperature. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 130 °C for 12 h. After the reaction was completed, it was cooled to room temperature and monitored by TLC. The solvent was then removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford product.

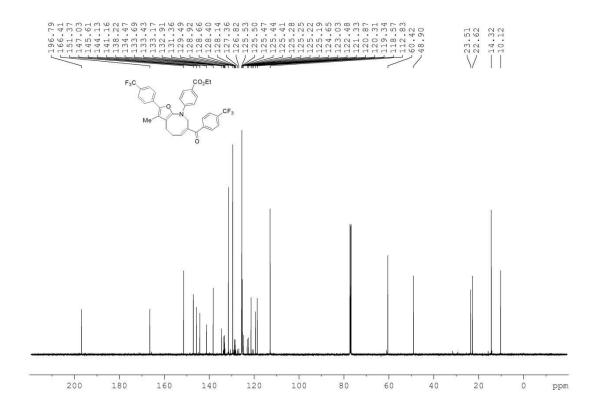
^{1}H NMR and ^{13}C NMR Spectra of All Compounds


Compound 3a

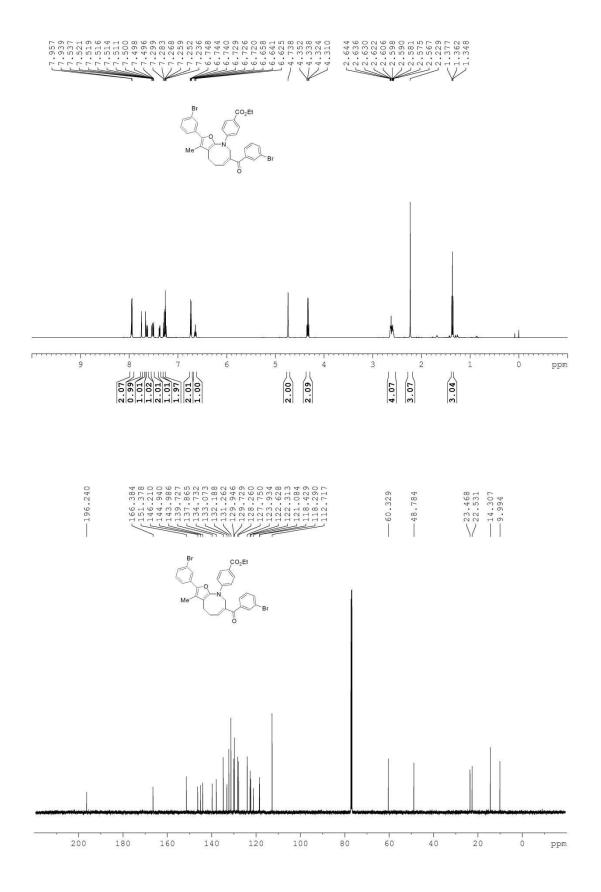

Compound **3b**


Compound 3c

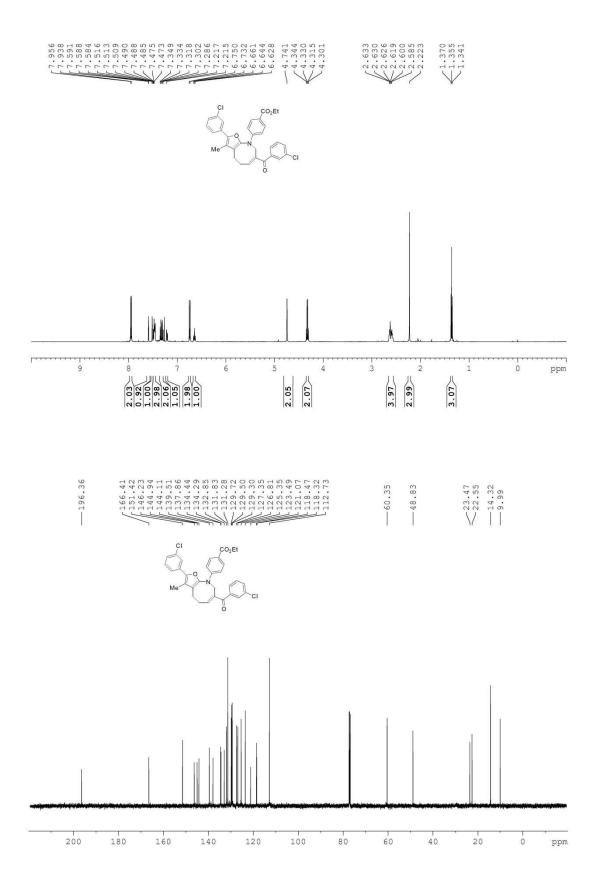

Compound 3d

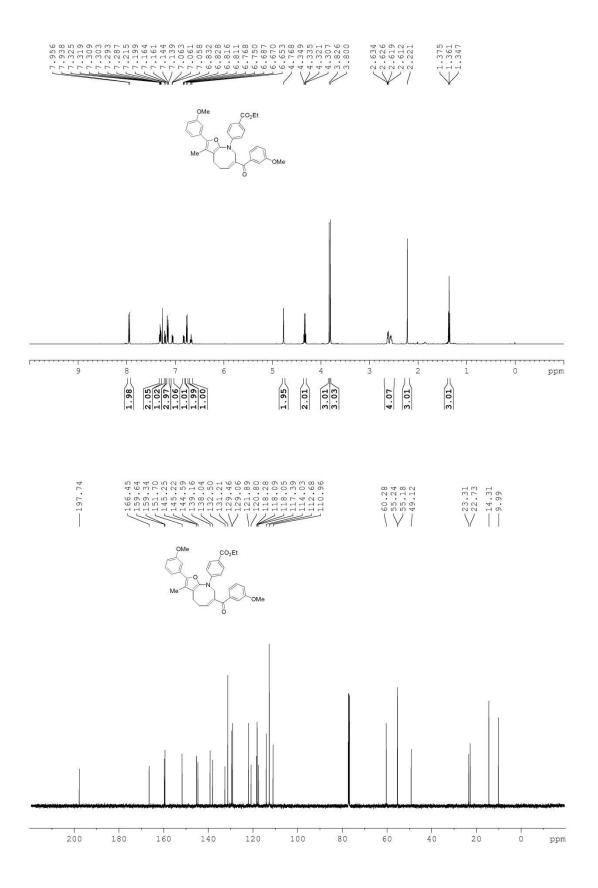


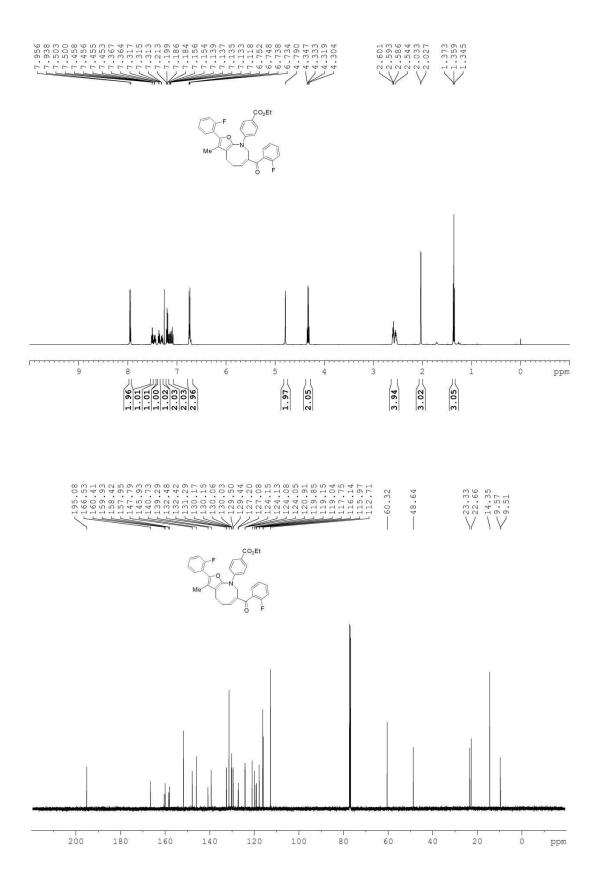
Compound 3e

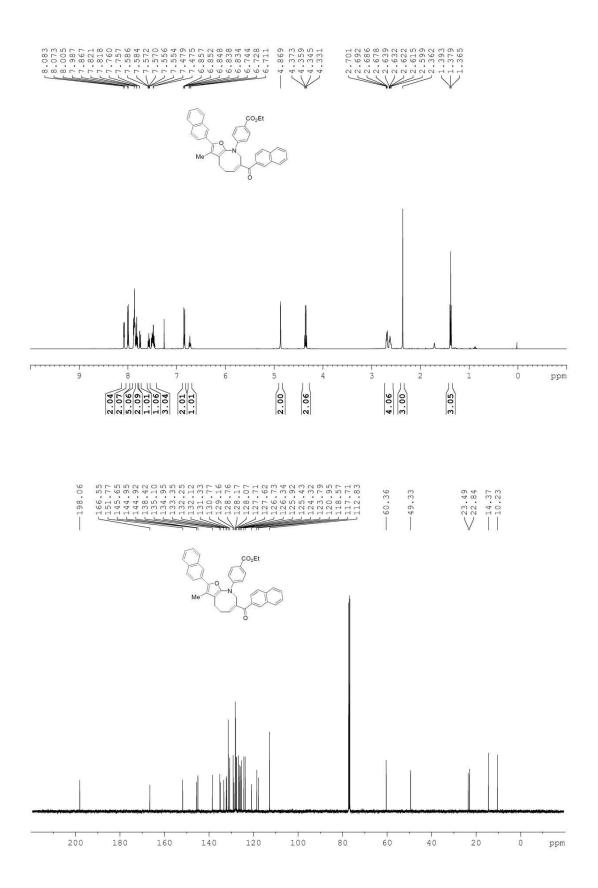


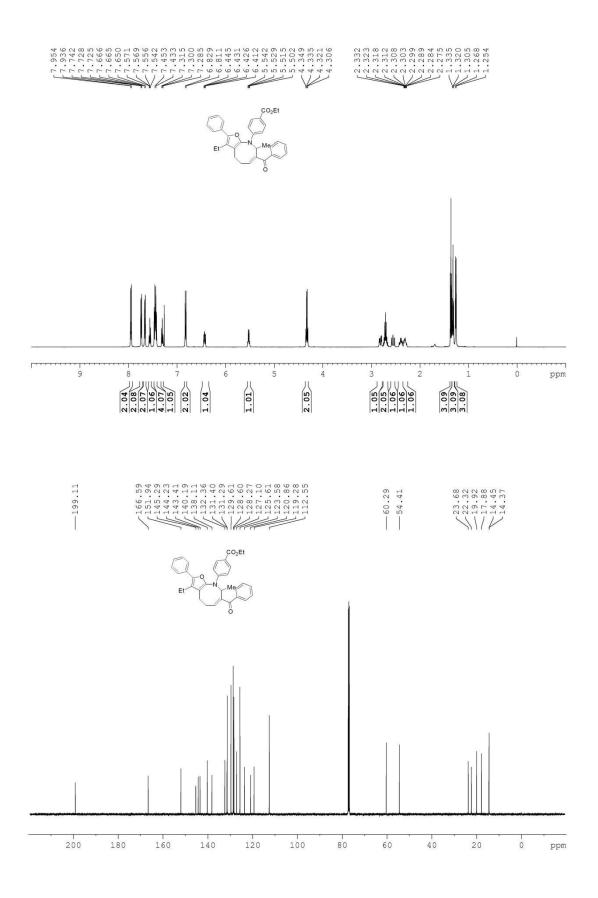
Compound 3f

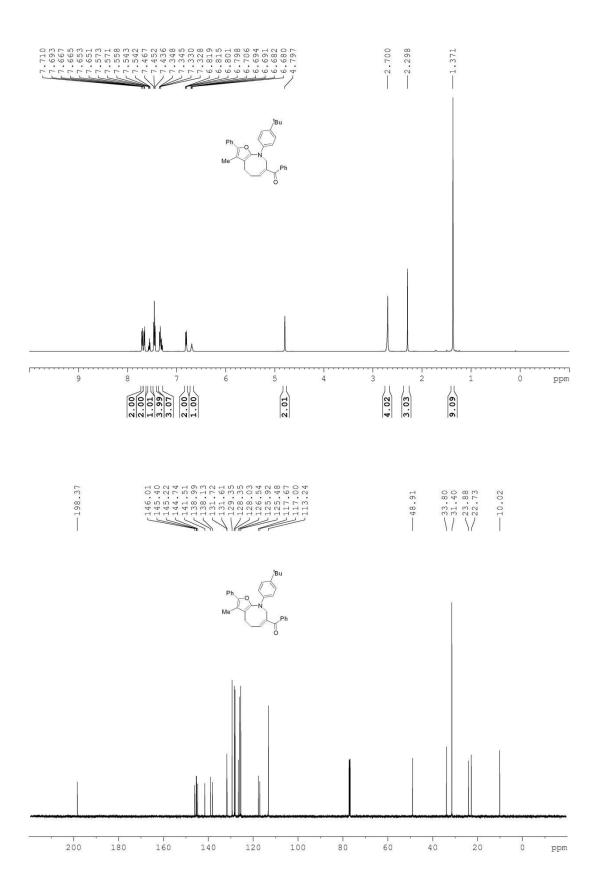


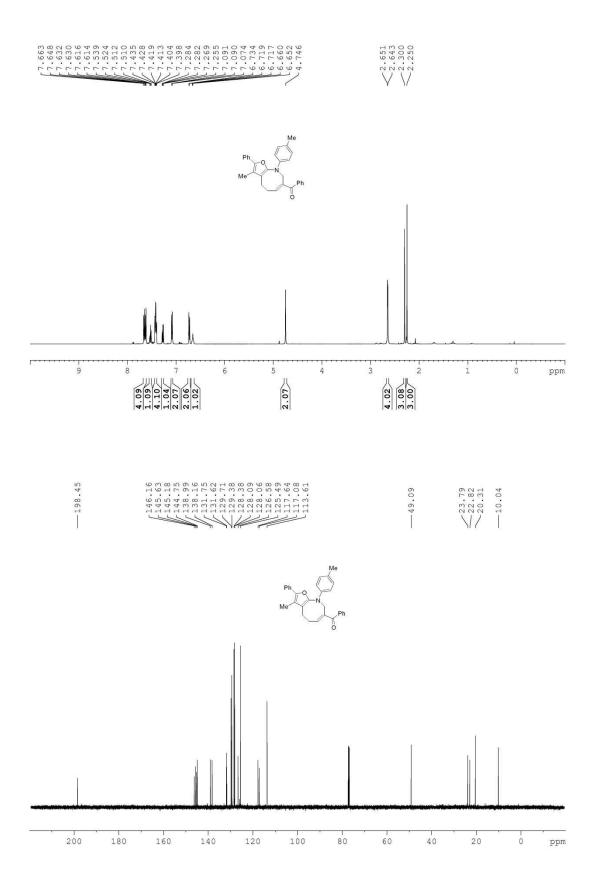

Compound 3g

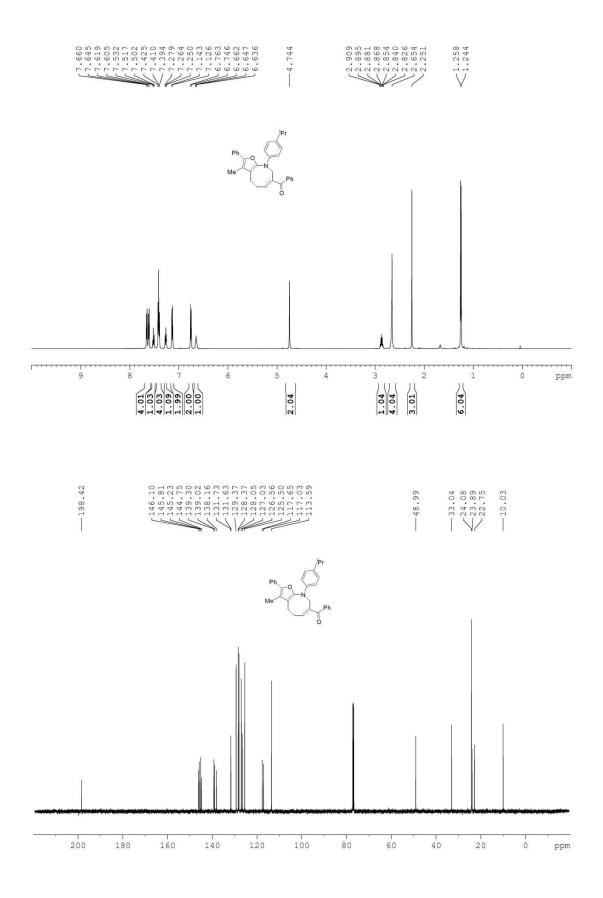

Compound 3h

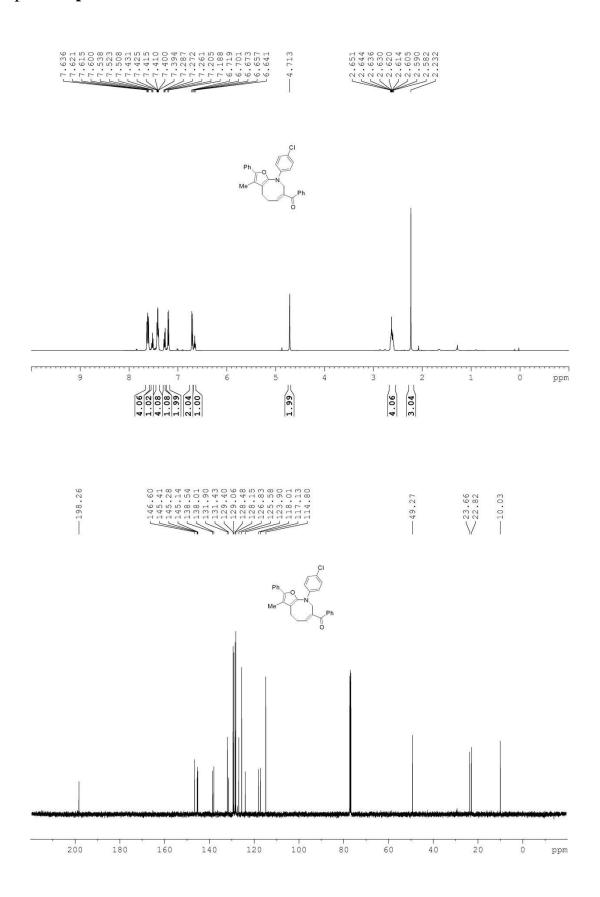

Compound 3i

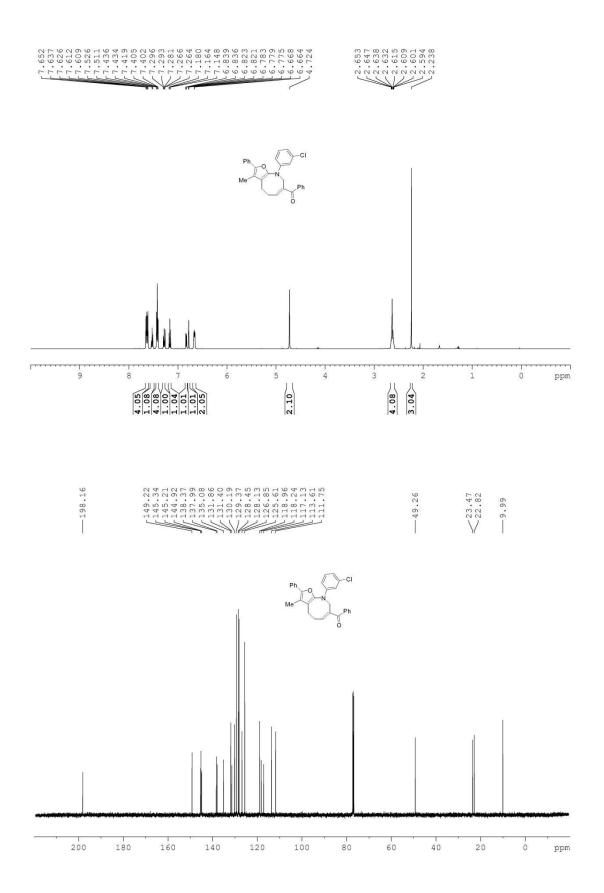

Compound 3j

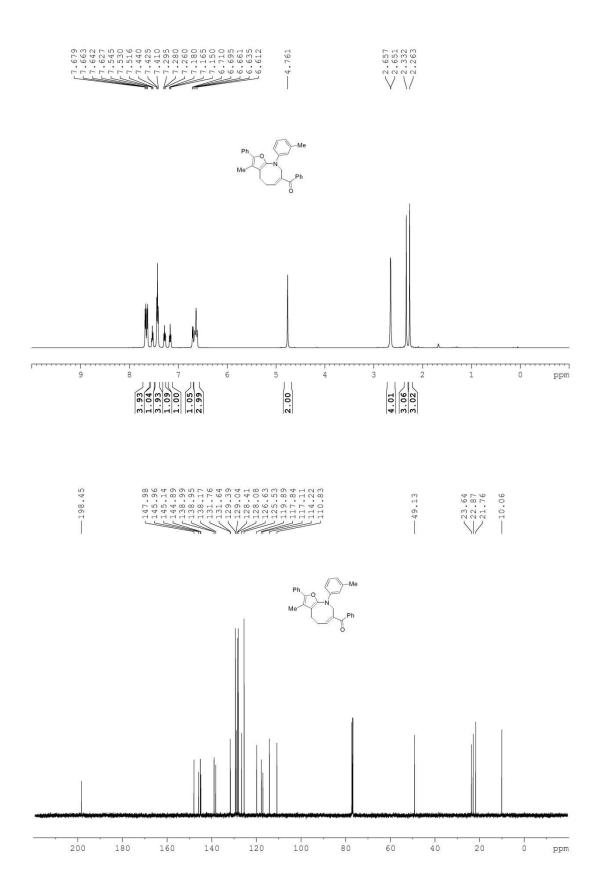

Compound 3k

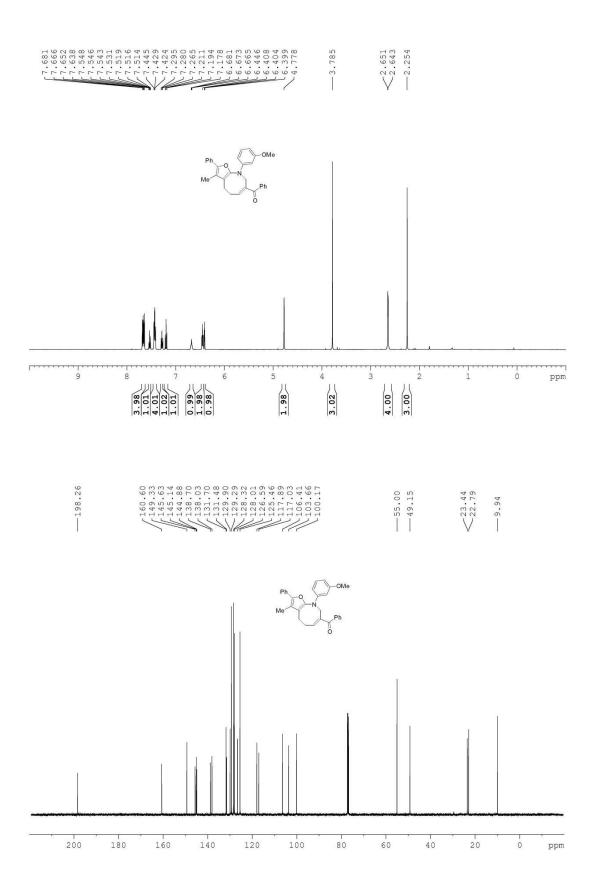

Compound 31

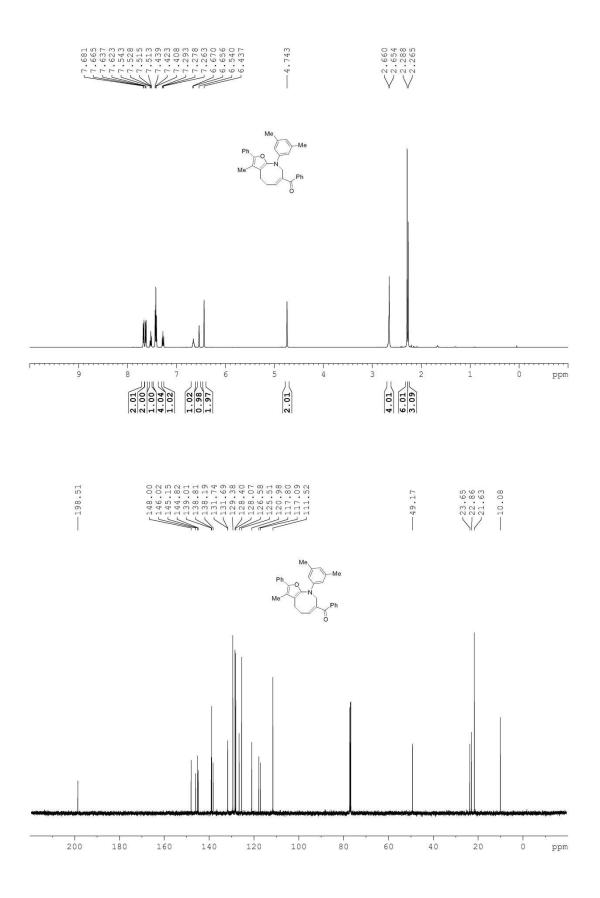

Compound 3m

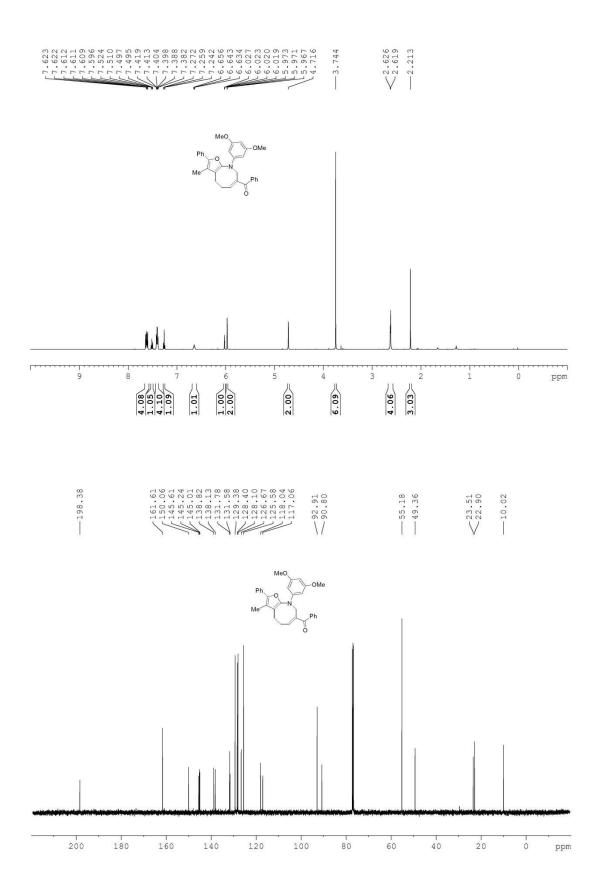

Compound 3n

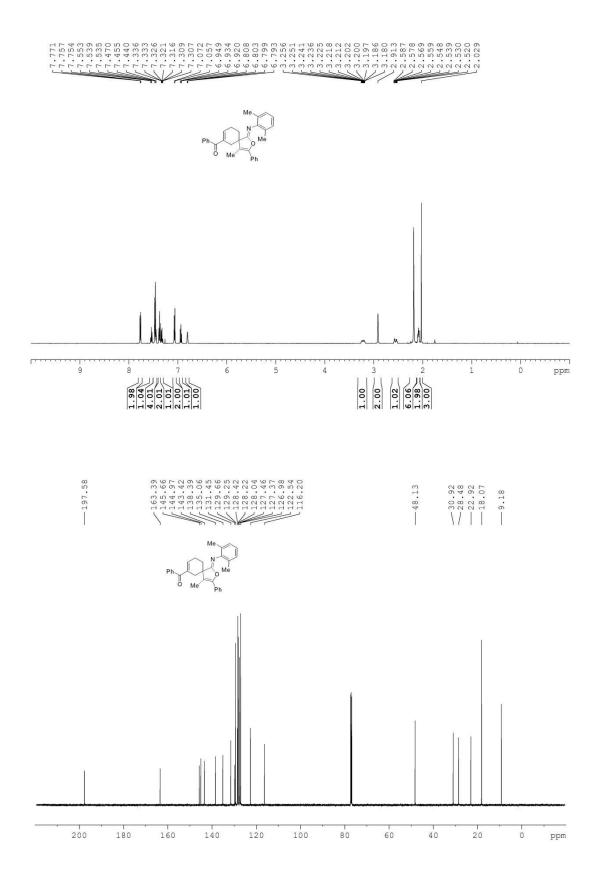

Compound 30

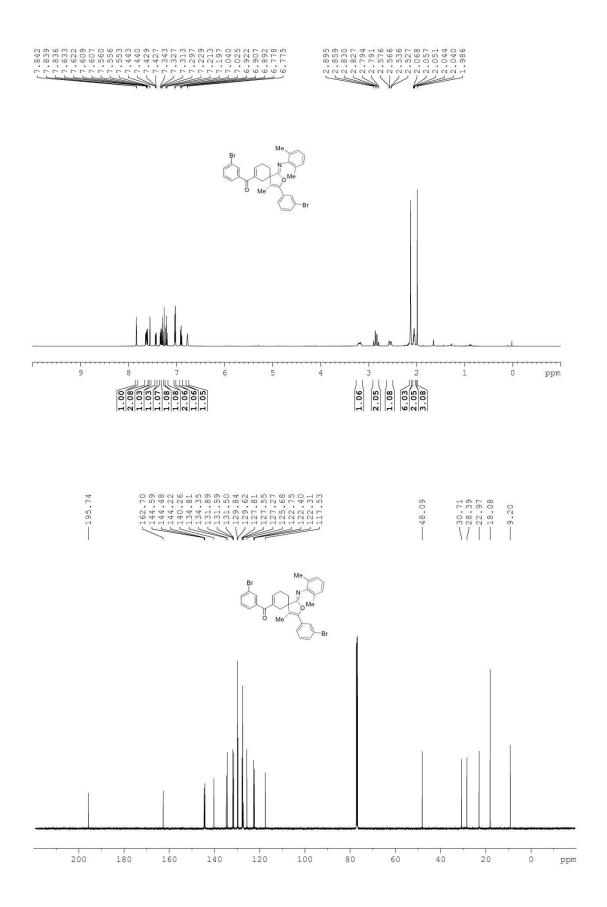

Compound **3p**

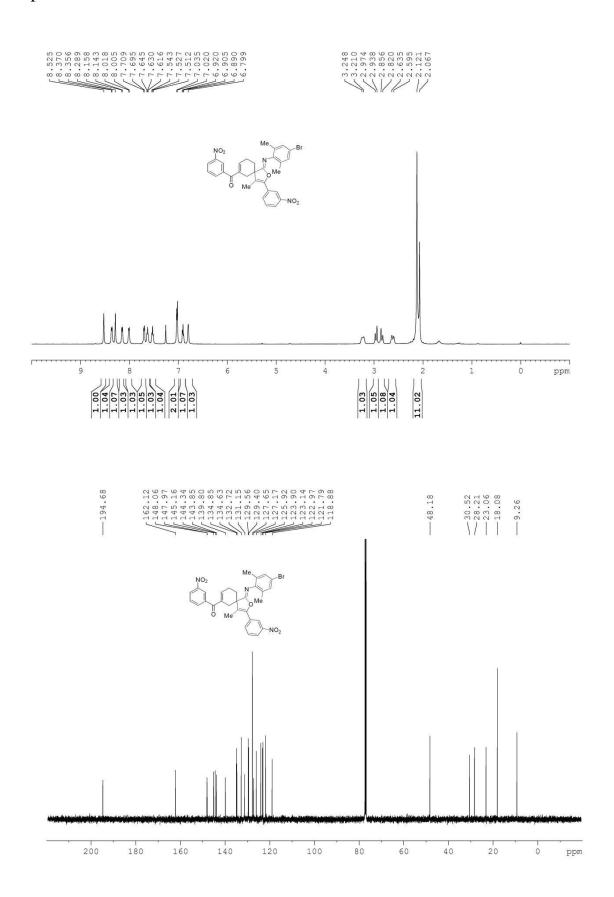

Compound 3q

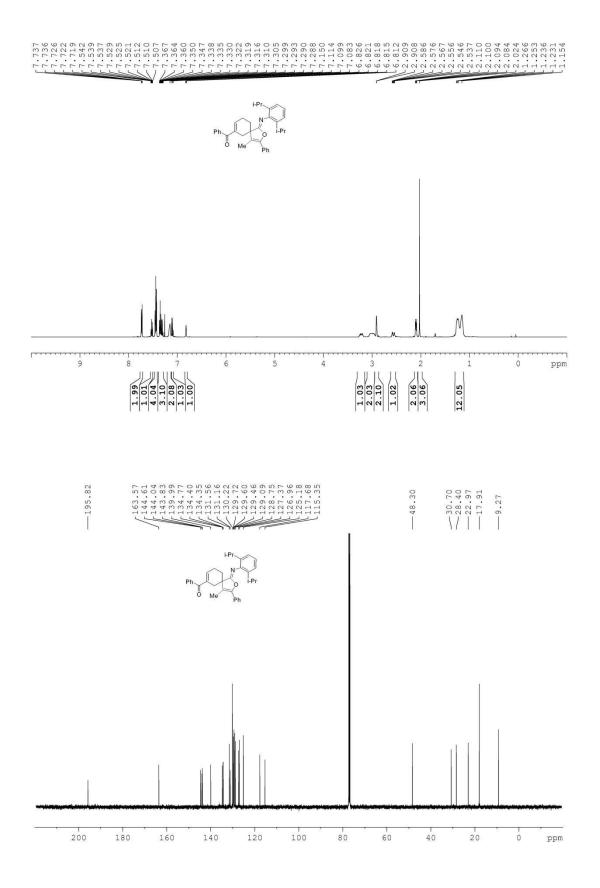

Compound 3r

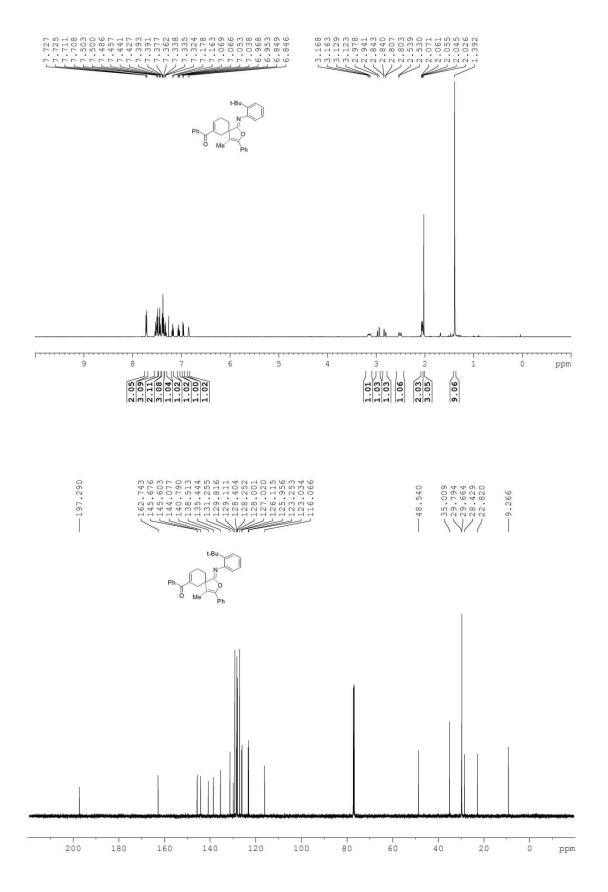

Compound 3s

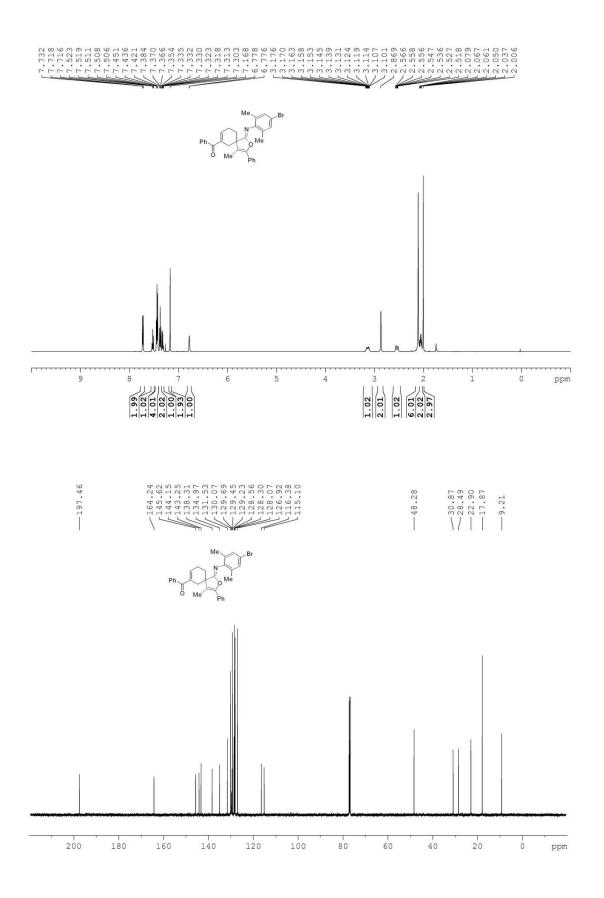

Compound 3t

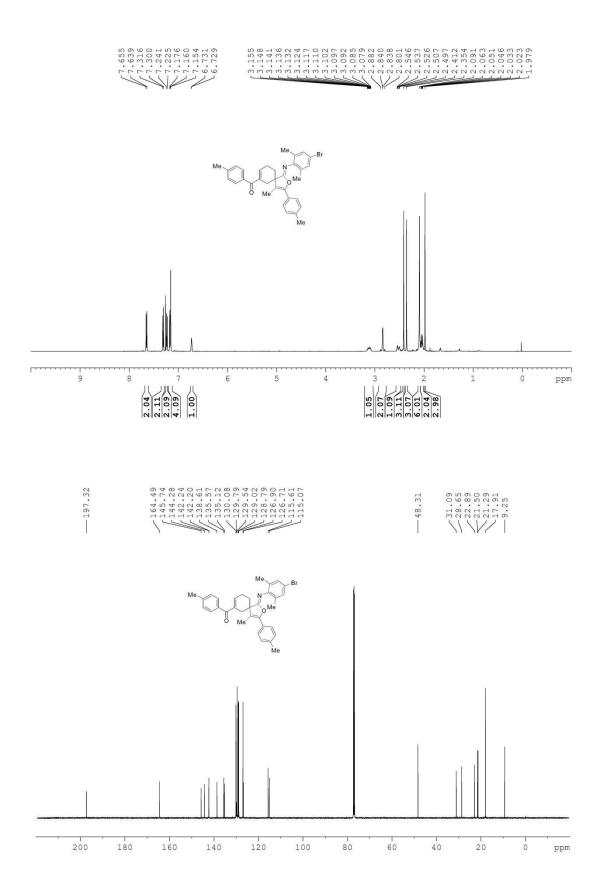

Compound 3u

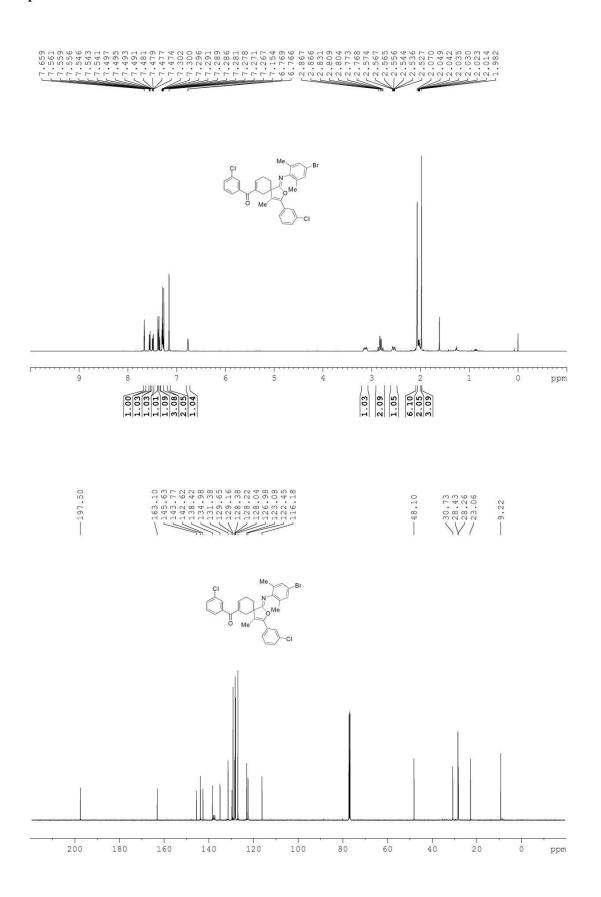

Compound 4a

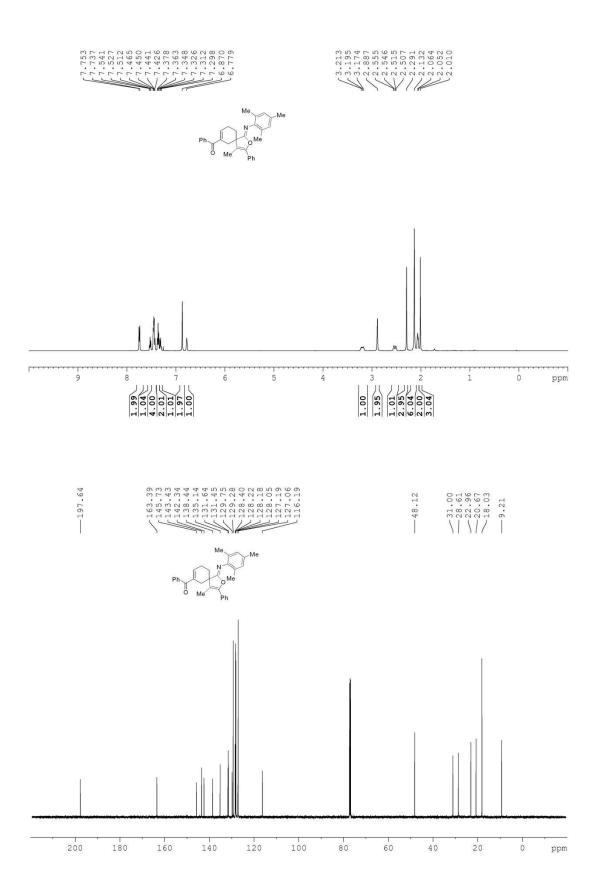

Compound 4b


Compound **4c**


Compound 4d


Compound 4e


Compound 4f


Compound 4g

Compound 4h

Compound 4i

