Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Visible Light Promoted Fluoroalkylation of Alkenes and Alkynes Using 2-Bromophenol as a Catalyst

Erlin Zhu,^{†,§} Xiao-Xiao Liu,^{†,§} An-Jun Wang,[†] Ting Mao,[†] Liang Zhao,^{†,*} Xingang Zhang^{‡,*} and Chun-Yang He^{†,*}

⁶ E. Zhu and X.-X. Liu Contributed equally to this work

[†]Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi 563003, P. R. China

‡Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032, P. R. China

List of Contents

1) General information	S03
2) General procedure	S03
3) Optimization	S05
4) Data for compounds 3, 5, 6, 7	S06
5) References	S29
6) Mechanism studies	S 30
7) Copies of NMR spectra of 3, 5, 6, 7	S 37

1. General information.

¹H NMR spectra were recorded on an Agilent NMR system (400 MHz). ¹⁹F NMR was recorded on an Agilent NMR spectrometer (376 MHz, CFCl₃ as outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All reagents were weighed and handled in air at room temperature. LEDs with short wavelength (450-455 nm, 460-465 nm, 480-485 nm, 495-500 nm, 510-515 nm, 530-535 nm) were purchased from WATTCASTM, and relevant experiments were performed in a WP-TEC-1020SL parallel reactor from WATTCASTM.

2. General procedure.

2.1 General procedure for visible light promoted fluoroalkylation of alkenes and alkynes using 2-bromophenol as a catalyst. To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv) under Ar, followed by DCE (2 mL) with stirring. Alkene (1)/ alkyne (4) (0.3 mmol, 1.0 equiv), 2-bromophenol (0.03 mmol, 0.1 equiv), and IR_f (2) (0.6 mmol, 2.0 equiv) were added subsequently. The tube was then irradiated with 12 W blue LEDs (430 nm-490 nm). After stirring for 16 h, the solvent was removed and the residue was purified with silica gel chromatography to provide pure product.

2.2 General procedure for visible light promoted fluoroalkylation of allylphenols. (Table 2, **3o-3r**). To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv) under Ar, followed by dioxane (2 mL) with stirring. Allylphenol (1) (0.3 mmol, 1.0 equiv) and ICF₂COOEt (2a) (0.6 mmol, 2.0 equiv) were added subsequently. The tube was then irradiated with 12 W blue LEDs (430 nm-490 nm). After stirring for 16 h, the solvent was removed and the residue was purified with silica gel chromatography to provide pure product.

2.3 General procedure for the Heck-type reaction of RfI with alkenes (Table 4, 6a-6h). To a 25

mL of Schlenk tube equipped with a Teflon septum were added K_2CO_3 (0.6 mmol, 2.0 equiv) under Ar, followed by DMSO (2 mL) with stirring. Alkenes (1) (0.3 mmol, 1.0 equiv), 2-bromophenol (0.03 mmol, 0.1 equiv), and ICF₂COOEt (2a) (0.6 mmol, 2.0 equiv) were added subsequently. The tube was then irradiated with 12 W blue LEDs (430 nm-490 nm). After stirring for 16 h, the residue was diluted with ethyl acetate, washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

2.4 General procedure for the Heck-type reaction of R_fI with allylphenols. (Table 4, 6i-6q). To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.9 mmol, 3.0 equiv) under Ar, followed by DCM/DMSO (v/v=3:1) (2 mL) with stirring. Allylphenol (1) (0.3 mmol, 1.0 equiv) and IR_f (2) (0.6 mmol, 2.0 equiv) were added subsequently. The tube was then irradiated with 12 W blue LEDs (430 nm-490 nm). After stirring for 14 h, the residue was diluted with ethyl acetate, washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated. The re sidue was purified with silica gel chromatography to provide pure product.

2.5 General procedure for visible light promoted difluoroalkylation of allylphenols (Table 5, 7a-7e). To a 25 mL of Schlenk tube equipped with a Teflon septum were added K_2CO_3 (0.6 mmol, 2.0 equiv) under Ar, followed by THF (2 mL) with stirring. Allylphenol (1) (0.3 mmol, 1.0 equiv) and ICF₂COOEt (2a) (0.6 mmol, 2.0 equiv) were added subsequently. The tube was then irradiated with 12 W blue LEDs (430 nm-490 nm). After stirring for 16 h, the solvent was removed and the residue was purified with silica gel chromatography to provide pure product.

3. Optimization.

Reaction optimization table of visible-light promoted difluoroalkylation of allylbenzene (1a)

Blue LEDs

Catalyst (x mo%)						
		Base (Solver	2.0 equiv) it, r.t., 16 h			
Entry	Wavelength (nm)	Catalyst (x mol%)	Base	Solvent	Vield (%) $3a^b$	
1	430-490		K ₂ CO ₃	Dioxane		
2	430-490	PhOH (10)	K ₂ CO ₃	Dioxane	68	
2	430-490	PhOH (10)	Cs_2CO_3	Dioxane	64	
4	430-490	PhOH (10)	Na ₂ CO ₃	Dioxane	31	
5	430-490	PhOH (10)	KOAc	Dioxane	73	
6	430-490	PhOH (10)	NaOAc	Dioxane	60	
° 7	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	Dioxane	85	
8	430-490	4-Br-C ₆ H ₄ OH (10)	KOAc	Dioxane	74	
9	430-490	2-Cl-C ₆ H ₄ OH (10)	KOAc	Dioxane	65	
10	430-490	4-CF ₃ O-C ₆ H ₄ OH (10)	KOAc	Dioxane	20	
11	430-490	2-Me-C ₆ H ₄ OH (10)	KOAc	Dioxane	63	
12	430-490	Catechol (10)	KOAc	Dioxane	73	
13	430-490	2-MeO-C ₆ H ₄ OH (10)	KOAc	Dioxane	72	
14	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	MeCN	65	
15	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	DMSO		
16	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	Toluene	12	
17	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	92 (88)	
18	430-490	2-Br-C ₆ H ₄ OH (5)	KOAc	DCE	79	
19 ^c	430-490	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE		
20	430-490	2-Br-C ₆ H ₄ OH (10)		DCE	7	
21	430-490		KOAc	DCE	44	
22	450-455	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	87	
23	460-465	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	83	
24	480-485	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	88	
25	495-500	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	57	
26	510-515	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE	14	
27	530-535	2-Br-C ₆ H ₄ OH (10)	KOAc	DCE		

^aReaction conditions (unless otherwise specified): 1a (0.3 mmol, 1.0 equiv), 2a (0.6 mmol, 2.0 equiv), catalyst (0.03 mmol, 0.1 equiv), solvent (2.0 mL), 12 W blue LEDs, room temperature, 16 h. ^bNMR yield was determined by ¹⁹F NMR using fluorobenzene as internal standard and number in parentheses is an isolated product yield. ^cThe reaction was performed without light.

4. Data for compounds 3, 5, 6, 7.

Ethyl 2,2-difluoro-4-iodo-5-phenylpentanoate (**3a**). This compound is known.¹ The product (97 mg, 88% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 80:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 3H), 7.20 (d, J = 8.0 Hz, 2H), 4.40-4.35 (m, 1H), 4.34 (q, J = 7.2 Hz, 2H), 3.30-3.18 (m, 2H), 3.05-2.70 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3 – -102.3 (m, 1F), -106.0 – -106.9 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (t, J = 32.5 Hz), 138.7, 128.9, 128.5, 127.1, 115.1 (t, J = 254.6 Hz), 63.2, 47.1, 44.2 (t, J = 23.5 Hz), 21.9 (t, J = 3.8 Hz), 13.8.

Ethyl 2,2-difluoro-4-iodo-5-(4-methoxyphenyl)pentanoate (3b). The product (85 mg, 71% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 4.29 (m, 1H), 3.80 (s, 3H), 3.17-3.15 (m, 2H), 2.96-2.70 (m, 2H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3 – -102.1 (m, 1F), -106.1 – -106.9 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, *J* = 32.5 Hz), 158.6, 130.8, 130.0, 115.2 (t, *J* = 253.7 Hz), 113.9, 63.2, 55.2, 46.3, 44.1 (t, *J* = 23.5 Hz), 22.7 (t, *J* = 3.7 Hz), 13.8. MS (ESI): m/z 399 (M+H)⁺. HRMS (ESI): Calculated for C₁₄H₁₈F₂IO₃ (M+H)⁺: 399.0263; Found: 399.0262.

Ethyl 2,2-difluoro-4-iodo-5-(perfluorophenyl)pentanoate (3c). The product (124 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as pale yellow

liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.45-4.30 (m, 1H), 4.36 (q, J = 7.2 Hz, 2H), 3.45-3.30 (m, 2H), 3.10-2.90 (m, 1H), 2.86-2.73 (m, 1H), 1.38 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.2 – -102.3 (m, 1F), -106.0 – -106.9 (m, 1F), -142.2 (dd, J = 21.8 Hz, 8.3 Hz, 2F), -154.8 (t, J = 20.3 Hz, 1F), -161.8 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (t, J = 32.2 Hz), 145.1 (dm, J = 251.4 Hz), 140.5 (dm, J = 255.3 Hz), 137.6 (dm, J = 253.9 Hz), 114.9 (t, J = 255.1 Hz), 113.1 (m), 63.5, 45.1 (t, J = 23.5 Hz), 33.8, 16.7, 13.8. MS (EI): m/z (%) 331 (100), (M-I)⁺, 303, 257. HRMS (EI): Calculated for C₁₃H₁₀F₇O₂ (M-I)⁺: 331.0569; Found: 331.0566.

CF₂COOEt

Ethyl 2, 2-difluoro-4-iododecanoate (3d). This compound is known.² The product (102 mg, 94% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.34 (q, J = 7.2 Hz, 2H), 4.25-4.18 (m, 1H), 2.98-2.84 (m, 1H), 2.79-2.66 (m, 1H), 1.85-1.68 (m, 2H), 1.55-1.46 (m, 1H), 1.37 (t, J = 7.2 Hz, 3H), 1.36-1.25 (m, 7H), 0.88 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5 – -102.6 (m, 1F), -106.4 – -107.3 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, J = 32.7 Hz), 115.2 (t, J = 253.4 Hz), 63.2, 45.3 (t, J = 23.3 Hz), 40.4, 31.5, 29.4, 28.2, 23.3 (t, J = 3.9 Hz), 22.5, 14.0, 13.9.

Ethyl 8-bromo-2,2-difluoro-4-iodooctanoate (3e). The product (113 mg, 91% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.34 (q, *J* = 7.2 Hz, 2H), 4.25-4.19 (m, 1H), 3.41 (t, *J* = 6.6 Hz, 2H), 2.99-2.85 (m, 1H), 2.81-2.67 (m, 1H), 1.96-1.65 (m, 5H), 1.60-1.50 (m, 1H), 1.37 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6 – -102.6 (m, 1F), -106.3 – -107.3 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (t, *J* = 32.3 Hz), 115.1 (t, *J* = 254.1 Hz), 63.3, 45.2 (t, *J* = 23.2 Hz), 39.4, 33.1, 31.6, 28.2, 22.2 (t, *J* = 3.7 Hz), 13.9. MS (ESI): m/z 415 (M⁺+H), 413 (M+H)⁺. HRMS (ESI): Calculated for C₁₀H₁₇F₂O₂BrI (M+H)⁺: 412.9419; Found: 412.9419.

Ethyl 2,2-difluoro-6-hydroxy-4-iodohexanoate (3f). The product (80 mg, 83% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.42-4.35 (m, 1H), 4.33 (q, J = 7.2 Hz, 2H), 3.88-3.68 (m, 2H), 3.05-2.70 (m, 2H), 2.00 (q, J = 6.1 Hz, 2H), 1.90 (s, 1H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.4 – -102.4 (m, 1F), -105.8 – -106.8 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, J = 32.5 Hz), 115.1 (t, J = 254.0 Hz), 63.3, 62.3, 45.4 (t, J = 23.3 Hz), 42.4, 19.0 (t, J = 4.1 Hz), 13.8. MS (ESI): m/z 323 (M+H)⁺, 305. HRMS (ESI): Calculated for C₈H₁₄F₂O₃I (M+H)⁺: 322.9950; Found: 322.9950.

5-Ethoxy-4,4-difluoro-2-iodo-5-oxopentyl picolinate (3g). The product (81 mg, 65% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.0, 1H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.86 (m, 1H), 7.51-7.48 (m, 1H), 4.71-4.67 (m, 1H), 4.58-4.46 (m, 2H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.03-2.81 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.2 – -103.4 (m, 1F), -105.6 – -106.6 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 163.1 (t, *J* = 32.3 Hz), 150.1, 147.2, 137.1, 127.2, 125.4, 114.7 (t, *J* = 254.2 Hz), 69.6, 63.4, 41.6 (t, *J* = 23.9 Hz), 14.2 (t, *J* = 4.0 Hz), 13.8. MS (ESI): m/z 414 (M+H)⁺. HRMS (ESI): Calculated for C₁₃H₁₅F₂O₄IN (M+H)⁺: 414.0008; Found: 414.0007.

6-Ethoxy-5,5-difluoro-3-iodo-6-oxohexyl benzoate (3h). The product (104 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 4.57-4.52 (m, 1H), 4.45-4.35 (m, 2H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.07-2.78 (m, 2H), 2.36-2.18 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.4 – -102.4 (m, 1F), -106.1 – -107.1 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 163.1 (t, *J* = 32.4 Hz), 133.0, 129.8, 129.5, 128.3, 115.0 (t, *J* = 254.3 Hz), 64.4, 63.2, 45.3 (t, *J* = 23.2 Hz), 38.9, 17.4 (t, *J* = 3.9 Hz), 13.8. MS (ESI): m/z 427 (M+H)⁺. HRMS (ESI): Calculated for C₁₅H₁₈F₂O₄I (M+H)⁺: 427.0212; Found: 427.0212.

Ethyl 5-acetoxy-2,2-difluoro-4-iodopentanoate (3i). The product (91 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.37-4.28 (m, 4H), 4.28-4.20 (m, 1H), 2.92-2.72 (m, 2H), 2.10 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.7 – -103.6 (m, 1F), -105.7 – -106.4 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 163.1 (t, J = 32.2 Hz), 114.7 (t, J = 254.0 Hz), 68.5, 63.3, 41.7 (t, J = 23.9 Hz), 20.7, 14.5 (t, J = 4.1 Hz), 13.8. MS (ESI): m/z 368 (M+NH₄)⁺. HRMS (ESI): Calculated for C₉H₁₇NF₂O₄I (M+NH₄)⁺: 368.0165; Found: 368.0163.

Ethyl 5-((tert-butoxycarbonyl)amino)-2,2-difluoro-4-iodopentanoate (3j). The product (103 mg, 84% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.98 (br, 1H), 4.34 (q, J = 6.8 Hz, 2H), 4.32-4.24 (m, 1H), 3.60-3.35 (m, 2H), 2.90-2.70 (m, 2H), 1.44 (s, 9H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.0 – -103.0 (m, 1F), -105.7 – -106.7 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ

163.2 (t, J = 32.8 Hz), 155.5, 114.9 (t, J = 253.2 Hz), 80.0, 63.3, 48.9, 42.1 (t, J = 23.8 Hz), 28.2, 21.1, 13.8. MS (ESI): m/z 408 (M+H)⁺. HRMS (ESI): Calculated for C₁₂H₂₁NF₂O₄I (M+H)⁺: 408.0478; Found: 408.0477.

Ethyl 2,2-difluoro-4-iodo-5-(2,2,2-trifluoroacetamido)pentanoate (3k). The product (87 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (br, 1H), 4.40-4.30 (m, 3H), 3.90-3.50 (m, 2H), 3.00-2.68 (m, 2H), 1.37 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9 (s, 3F), -102.0 – -103.0 (m, 1F), -105.4 – -106.4 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, *J* = 32.2 Hz), 157.3 (q, *J* = 37.7 Hz), 115.6 (q, *J* = 288.8 Hz), 114.6 (t, *J* = 254.3 Hz), 63.6, 47.3, 42.6 (t, *J* = 23.8 Hz), 17.6, 13.8. MS (ESI): m/z 404 (M+H)⁺. HRMS (ESI): Calculated for C₉H₁₂NF₅O₃I (M+H)⁺: 403.9777; Found: 403.9778.

(4,4,5,5,6,6,7,7,7-Nonafluoro-2-iodoheptyl)benzene (3l). This compound is known.³ The product (104 mg, 75% yield) was purified with silica gel chromatography (Petroleum ether (100%)) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 3H), 7.22 (d, J = 6.8 Hz, 2H), 4.48 (m, 1H), 3.35-3.15 (m, 2H), 2.90 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (m, 3F), -113.2 (m, 2F), -124.6 (m, 2F), -126.0 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 138.5, 128.9, 128.6, 127.3, 120.0-104.0 (m), 46.9 (d, J = 1.8 Hz), 40.6 (t, J = 21.0 Hz), 19.4.

1,1,1,2,2,3,3,4,4-Nonafluoro-6-iododecane (3m). This compound is known.³ The product (112 mg,

87% yield) was purified with silica gel chromatography (Petroleum ether (100%)) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 4.39-4.29 (m, 1H), 3.00-2.70 (m, 2H), 1.90-1.72 (m, 2H), 1.60-1.20 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (t, J = 9.6 Hz, 3F), -113.6 (m, 2F), -124.7 (m, 2F), -126.0 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 122.0-105.0 (m), 41.5 (t, J = 20.9 Hz), 40.0 (d, J = 2.0 Hz), 31.6, 21.6, 20.8, 13.8.

BocHN C₄F₉

Tert-butyl (4,4,5,5,6,6,7,7,7-nonafluoro-2-iodoheptyl)carbamate (3n). This compound is known.⁴ The product (92 mg, 61% yield) was purified with silica gel chromatography (Petroleum ether /Ethyl acetate = 15:1) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.97 (br, 1H), 4.38 (m, 1H), 3.70-3.40 (m, 2H), 2.95-2.65 (m, 2H), 1.45 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (m, 3F), -113.6 (m, 2F), -124.6 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 120.0-110.0 (m), 80.2, 48.9, 38.4 (t, *J* = 21.3 Hz), 28.2, 18.7.

Ethyl 2,2-difluoro-5-(2-hydroxyphenyl)-4-iodopentanoate (30). The product (98 mg, 85% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (td, J = 7.8 Hz, 1.6 Hz, 1H), 7.11 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 6.90 (td, J = 7.4 Hz, 0.8 Hz, 1H). 6.75 (dd, J = 8.0 Hz, 0.8 Hz, 1H), 5.00 (s, 1H), 4.58-4.51 (m, 1H), 4.33 (q, J = 7.0 Hz, 2H), 3.33-3.19 (m, 2H), 3.01-2.73 (m, 2H), 1.36 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0 – -102.0 (m, 1F), -105.5 – -106.6 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, J = 32.4 Hz), 153.6, 131.5, 128.6, 125.5, 120.8, 115.5, 115.2 (t, J = 253.4 Hz), 63.3, 44.4 (t, J = 23.7 Hz), 42.5, 20.9 (t, J = 4.2 Hz), 13.8. MS (EI): m/z (%) 384 (M⁺), 257 (100), 119. HRMS (EI): Calculated for C₁₃H₁₅F₂O₃I (M⁺): 384.0034; Found: 384.0030.

Ethyl 2,2-difluoro-5-(2-hydroxy-5-methylphenyl)-4-iodopentanoate (3p). The product (78 mg, 65% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, *J* = 7.8 Hz, 1.6 Hz, 1H), 6.90 (d, *J* = 1.6 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 4.81 (s, 1H), 4.56-4.48 (m, 1H), 4.33 (q, *J* = 7.0 Hz, 2H), 3.28-3.17 (m, 2H), 2.99-2.72 (m, 2H), 2.27 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0 – -102.0 (m, 1F), -105.8 – -106.8 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, *J* = 32.6 Hz), 151.2, 131.9, 130.1, 128.9, 125.3, 115.4, 115.2 (t, *J* = 254.5 Hz), 63.3, 44.3 (t, *J* = 23.7 Hz), 42.5, 20.9 (t, *J* = 4.1 Hz), 20.5, 13.8. MS (EI): m/z (%) 398 (M⁺), 271, 133 (100). HRMS (EI): Calculated for C₁₄H₁₇F₂O₃I (M⁺): 398.0191; Found: 398.0201.

Ethyl 5-(5-chloro-2-hydroxyphenyl)-2,2-difluoro-4-iodopentanoate (3q). The product (72 mg, 57% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, J = 8.6 Hz, 2.4 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 4.54-4.47 (m, 1H), 4.35 (q, J = 7.2 Hz, 2H), 3.31-3.26 (m, 1H), 3.16-3.10 (m, 1H), 3.02-2.72 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.0 – -102.0 (m, 1F), -106.0 – -107.0 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, J = 32.4 Hz), 152.2, 131.1, 128.3, 127.3, 125.4, 116.8, 115.1 (t, J = 253.7 Hz), 63.4, 44.6 (t, J = 23.7 Hz), 42.1, 20.0 (t, J = 4.0 Hz), 13.9. MS (EI): m/z (%) 420 (M⁺), 418 (M⁺), 291, 153(100). HRMS (EI): Calculated for C₁₃H₁₄F₂O₃CII (M⁺): 417.9644; Found: 417.9652.

Ethyl 2,2-difluoro-5-(2-hydroxy-3-methoxyphenyl)-4-iodopentanoate (3r). The product (65 mg, 52% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (m, 2H), 6.73 (m, 1H), 5.75 (s, 1H), 4.60-4.50 (m, 1H), 4.33 (q, *J* = 7.0 Hz, 2H), 3.89 (s, 3H), 3.33-3.23 (m, 2H), 3.00-2.70 (m, 2H), 1.36 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5 (dt, *J* = 264.3, 15.0 Hz, 1F), 106.4 (dt, *J* = 262.8, 16.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (t, *J* = 32.6 Hz), 146.4, 143.7, 124.8, 123.0, 119.4, 115.2 (t, *J* = 253.2 Hz), 109.5, 63.2, 55.9, 44.2 (t, *J* = 23.8 Hz), 42.3, 20.4 (t, *J* = 4.3 Hz), 13.8. MS (EI): m/z (%) 414 (M⁺), 287, 259. HRMS (EI): Calculated for C₁₄H₁₇F₂O₄I (M⁺): 414.0140; Found: 414.0132.

Ethyl (*E*)-2,2-difluoro-4-iododec-3-enoate (5a). This compound is known.⁵ The product (93 mg, 86% yield, *Z*:*E* = 1:5.5) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.40 (t, *J* = 13.2 Hz, 1H), 4.33 (q, *J* = 7.2 Hz, 2H), 2.59 (t, *J* = 7.2 Hz, 2H), 1.60-1.48 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33-1.25 (m, 6H), 0.89 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.8 (d, *J* = 12.4 Hz, 2F, *E*), -97.9 (d, *J* = 12.4 Hz, 2F, *Z*). ¹³C NMR (101 MHz, CDCl₃) δ 163.2 (t, *J* = 34.4 Hz), 131.2 (t, *J* = 27.2 Hz), 119.6 (t, *J* = 7.7 Hz), 111.5 (t, *J* = 253.6 Hz), 63.3, 40.7, 31.5, 29.8, 28.0, 22.5, 14.0, 13.9.

Ethyl (*E*)-8-chloro-2,2-difluoro-4-iodooct-3-enoate (5b). The product (75 mg, 68% yield, *Z*:*E* = 1:6.7) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.44 (t, *J* = 13.2 Hz, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.55 (t, *J* = 6.4 Hz, 2H), 2.65 (t, *J* = 7.0 Hz, 2H), 1.82-1.67 (m, 4H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F

NMR (376 MHz, CDCl₃) δ -97.8 (d, J = 13.5 Hz, 2F, E). ¹³C NMR (101 MHz, CDCl₃) δ 163.1 (t, J = 34.4 Hz), 131.9 (t, J = 27.2 Hz), 118.3 (t, J = 7.7 Hz), 111.5 (t, J = 253.8 Hz), 63.4, 44.4, 39.8, 31.0, 27.1, 13.9. MS (ESI): m/z 369 (M⁺+H), 367 (M+H)⁺. HRMS (ESI): Calculated for C₁₀H₁₅F₂O₂ClI (M+H)⁺: 366.9768; Found: 366.9767.

Ethyl (*E*)-2,2-difluoro-6-hydroxy-4-iodohex-3-enoate (5c). The product (67 mg, 70% yield, *Z*:*E* = 1:5.6) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 5:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.56 (t, *J* = 13.2 Hz, 1H), 4.34 (q, *J* = 7.2 Hz, 2H), 3.82 (t, *J* = 6.2 Hz, 2H), 2.92 (m, 2H), 1.59 (s, 1H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.6 (d, *J* = 12.4 Hz, 2F, *E*). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (t, *J* = 34.3 Hz), 133.8 (t, *J* = 27.5 Hz), 114.1 (t, *J* = 7.7 Hz), 111.5 (t, *J* = 254.0 Hz), 63.6, 61.6, 43.3, 13.9. MS (ESI): m/z, 321 (M+H)⁺. HRMS (ESI): Calculated for C₈H₁₂F₂O₃I (M+H)⁺: 320.9794; Found: 320.9794.

Ethyl (*E*)-2,2-difluoro-4-iodo-6-phenylhex-3-enoate (5d). The product (83 mg, 73% yield, *Z*:*E* = 1:6.0) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.10 (m, 5H), 6.43 (t, *J* = 13.2 Hz, 1H), 4.29 (q, *J* = 7.2 Hz, 2H), 3.00-2.80 (m, 4H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.1 (d, *J* = 13.5 Hz, 2F, *E*), -98.3 (d, *J* = 12.0 Hz, 2F, *Z*). ¹³C NMR (101 MHz, CDCl₃) δ 163.0 (t, *J* = 34.3 Hz), 139.7, 131.8 (t, *J* = 27.0 Hz), 128.6, 128.5, 126.4, 117.4 (t, *J* = 7.5 Hz), 111.5 (t, *J* = 253.6 Hz), 63.4, 43.0 (t, *J* = 1.9 Hz), 36.0, 13.9. MS (ESI): m/z 398 (M+NH₄)⁺, 381 (M+H)⁺. HRMS (ESI): Calculated for C₁₄H₁₉F₂NO₂I (M+NH₄)⁺: 398.0423; Found: 398.0421.

Ethyl (*E*)-5-(3,5-dichlorobenzamido)-2,2-difluoro-4-iodo-5-methylhex-3-enoate (5e). The product (105 mg, 69% yield, *Z*:*E* = 1:69) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.52 (m, 2H), 7. 48-7.38 (m, 1H), 6.70-6.62 (m, 1H), 6.33 (br, 1H), 4.35 (q, *J* = 7.2 Hz, 2H), 1.69 (s, 6H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.4 – -95.7 (m, 2F, *E*). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 162.4 (t, *J* = 34.1 Hz), 137.5, 135.1, 131.1, 128.3 (t, *J* = 30.4 Hz), 125.6, 112.4 (t, *J* = 248.9 Hz), 63.3, 59.9, 26.9, 13.8. MS (ESI): m/z 508 (M+H)⁺, 506 (M+H)⁺. HRMS (ESI): Calculated for $C_{16}H_{17}F_2Cl_2NO_3I$ (M+H)⁺: 505.9593; Found: 505.9591.

Ethyl (*E*)-2,2-difluoro-4-iodo-4-(p-tolyl)but-3-enoate (5f). This compound is known.⁶ The product (96 mg, 87% yield, *Z*:*E* = 1:10) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.69 (t, *J* = 10.8 Hz, 1H), 3.97 (q, *J* = 7.2 Hz, 2H), 2.34 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.6 (d, *J* = 10.9 Hz, 2F, *E*). ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (t, *J* = 33.4 Hz), 139.6, 137.8, 132.6 (t, *J* = 28.6 Hz), 128.6, 127.8 (t, *J* = 1.8 Hz), 110.8 (t, *J* = 250.9 Hz), 109.2 (t, *J* = 10.2 Hz), 63.0, 21.3, 13.6.

Ethyl (*E*)-2,2-difluoro-4-iodo-4-(4-(trifluoromethyl)phenyl)but-3-enoate (5g). This compound is known.⁷ The product (115 mg, 91% yield, Z:E = 1:8.4) was purified with silica gel chromatography

(Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 6.76 (t, *J* = 11.2 Hz, 1H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.24 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 3F), -95.3 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (t, *J* = 33.4 Hz), 144.3, 133.8 (t, *J* = 27.4 Hz), 131.2 (q, *J* = 33.0 Hz), 128.0 (t, *J* = 2.0 Hz), 125.1 (q, *J* = 3.8 Hz), 123.6 (q, *J* = 273.4 Hz), 110.8 (t, *J* = 253.0 Hz), 105.9 (t, *J* = 8.9 Hz), 63.4, 13.7.

Ethyl (*E*)-2,2-difluoro-4-iodo-4-(3-methoxyphenyl)but-3-enoate (5h). This compound is known.⁷ The product (103 mg, 90% yield, *Z*:*E* = 1:5.6) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.8 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.86-6.80 (m, 2H), 6.70 (t, *J* = 11.0 Hz, 1H), 3.98 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.8 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (t, *J* = 33.2 Hz), 158.8, 141.7, 133.0 (t, *J* = 28.7 Hz), 129.1, 120.2, 115.4, 113.1, 110.8 (t, *J* = 251.2 Hz), 108.3 (t, *J* = 10.3 Hz), 63.1, 55.3, 13.6.

Methyl (*E*)-3-(4-ethoxy-3,3-difluoro-1-iodo-4-oxobut-1-en-1-yl)benzoate (5i). The product (107 mg, 87% yield, *Z*:*E* = 1:25) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.2 Hz, 1H), 7.95 (s, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 1H), 6.74 (t, *J* = 11.4 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.92 (s, 3H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.2 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 162.4 (t, *J* = 33.5 Hz), 141.1, 133.6 (t, *J* = 27.8 Hz),

131.8, 130.2, 130.1, 128.6, 128.2, 110.8 (t, J = 252.2 Hz), 106.7 (t, J = 8.9 Hz), 63.3, 52.3, 13.6. MS (ESI): m/z 411 (M+H)⁺. HRMS (ESI): Calculated for C₁₄H₁₄F₂O₄I (M+H)⁺: 410.9899; Found: 410.9900.

Ethyl (*E*)-4-(2-chlorophenyl)-2,2-difluoro-4-iodobut-3-enoate (5j). This compound is known.⁷ The product (96 mg, 83% yield, *Z*:*E*=1:23) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 1H), 7.29-7.21 (m, 3H), 6.77 (t, *J* = 11.2 Hz, 1H), 4.16-4.09 (m, 2H), (m, 2H), 1.26 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.0 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (t, *J* = 33.6 Hz), 138.8, 134.6 (t, *J* = 27.6 Hz), 131.4, 130.4, 129.7, 128.8, 126.5, 110.8 (t, *J* = 253.1 Hz), 103.3 (t, *J* = 9.2 Hz), 63.3, 13.7.

Ethyl (E)-2,2-difluoro-4-iodo-4-(pyridin-3-yl)but-3-enoate (**5k**). This compound is known.⁶ The product (84 mg, 79% yield, *Z:E*=1:13) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 20:1) as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 2.0 Hz, 1H), 8.51 (dd, *J* = 4.5 Hz, 1.4 Hz, 1H), 7.61 (dt, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.25 (dd, *J* = 8.0 Hz, 4.8 Hz, 1H), 6.79 (t, *J* = 11.6 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -95.4 (d, *J* = 12.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (t, *J* = 33.3 Hz), 149.9, 147.8, 137.1, 135.1, 134.4 (t, *J* = 27.3 Hz), 122.7, 110.8 (t, *J* = 253.3 Hz), 103.7 (t, *J* = 8.8 Hz), 63.5, 13.7. MS (ESI): m/z 354 (M+H)⁺. HRMS (ESI): Calculated for C₁₁H₁₁F₂NO₂I (M+H)⁺: 353.9797; Found: 353.9796.

(*E*)-1-Methoxy-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (5l). The product (129 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 150:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.8 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 1H), 6.54 (t, *J* = 13.6 Hz, 2H), 3.80 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.1 (m, 3F), -105.2 (m, 2F), -123.9 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 133.5, 128.8 (t, *J* = 2.4 Hz), 126.2 (t, *J* = 21.9 Hz), 120.0-105.0 (m), 113.3, 55.2. MS (EI): m/z (%) 478 (M⁺), 351(100), 132. HRMS (EI): Calculated for C₁₃H₈F₉OI (M⁺): 477.9476; Found: 477.9474.

(*E*)-5,5,6,6,7,7,8,8,8-Nonafluoro-3-iodooct-3-en-1-ol (5m). This compound is known.⁴ The product (77 mg, 62% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as pale yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.48 (d, *J* = 14.2 Hz, 1H), 3.86 (t, *J* = 6.4 Hz, 2H), 2.93 (t, *J* = 6.0 Hz, 2H), 1.57 (br, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.0 (m, 3F), -105.3 (m, 2F), -124.1 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 128.9 (t, *J* = 23.9 Hz), 117.2 (t, *J* = 5.6 Hz), 120.0-105.0 (m), 61.8, 43.6.

(*E*)-1-Methyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-iodooct-1-en-1-yl)benzene (5n). The product (121.4 mg, 70% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 150:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.53 (t, *J* = 13.4 Hz, 1H), 3.80 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.8 (m, 3F), -104.9 (m, 2F), -121.8 (m, 2F), -122.9 (m, 4F), -126.2 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ

160.2, 133.6, 128.8 (t, J = 2.4 Hz), 126.2 (t, J = 21.9 Hz), 120.0-105.0 (m), 113.3, 55.3. MS (EI): m/z (%) 578 (M⁺), 451 (100), 132. HRMS (EI): Calculated for C₁₅H₈F₁₃OI (M⁺): 577.9412; Found: 577.9405.

Ethyl (*E*)-2,2-difluoro-5-phenylpent-3-enoate (6a). This compound is known.⁸ The product (50 mg, 70% yield, *Z*:*E* = 1:12) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 100:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (t, *J* = 7.2 Hz, 2H), 7.23 (m, 1H), 7.15 (d, *J* = 7.2 Hz, 2H). 6.43 (m, 1H), 5.69 (dd, *J* = 26.0 Hz, 11.8 Hz, 1H), 4.30 (q, *J* = 6.8 Hz, 2H), 3.47 (s, 2H), 1.32 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.2 (s, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.9 (t, *J* = 34.8 Hz), 138.3 (t, *J* = 9.0 Hz), 137.7, 128.6, 126.6, 126.3, 122.2 (t, *J* = 25.2 Hz), 112.2 (t, *J* = 249.1 Hz), 62.9, 38.0, 13.9.

Ethyl (*E*)-2,2-difluoro-5-(4-methoxyphenyl)pent-3-enoate (6b). The product (61 mg, 75% yield, *Z*:*E* = 1:14) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.08 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H). 6.46-6.35 (m, 1H), 5.75-5.60 (m, 1H), 4.32 (q, *J* =7.2 Hz, 2H), 3.80 (s, 3H), 3.45-3.38 (m, 2H), 1.34 (t, *J* =7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.1 (d, *J* = 9.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (t, *J* = 34.8 Hz), 158.3, 138.8 (t, *J* = 9.0 Hz), 129.6, 127.6, 121.8 (t, *J* = 25.2 Hz), 114.0, 112.3 (t, *J* = 248.9 Hz), 62.9, 55.2, 37.2, 13.9. MS (EI): m/z (%) 270 (M⁺), 177, 147(100). HRMS (EI): Calculated for C₁₄H₁₆F₂O₃ (M⁺): 270.1068; Found: 270.1057.

Ethyl (*E*)-2,2-difluoro-5-(2-methoxyphenyl)pent-3-enoate (6c). The product (60 mg, 74% yield, *Z*:*E* = 1:10) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 6.89 (t, *J* = 7.2 Hz, 1H). 6.86 (d, *J* = 8.8 Hz, 1H), 6.50-6.35 (m, 1H), 5.75-5.60 (m, 1H), 4.30 (q, *J* = 7.2 Hz, 2H), 3.80 (s, 3H), 3.45 (m, 1H), 1.31 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.1 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.1 (t, *J* = 34.6 Hz), 157.2, 138.0 (t, *J* = 9.0 Hz), 129.9, 128.0, 126.3, 121.5 (t, *J* = 5.0 Hz), 120.5, 112.4 (t, *J* = 246.2 Hz), 110.3, 62.8, 55.2, 32.7, 13.9. MS (EI): m/z (%) 270 (M⁺), 177, 147(100). HRMS (EI): Calculated for C₁₄H₁₆F₂O₃ (M⁺): 270.1068; Found: 270.1078.

Ethyl (*E*)-5-(3,4-dimethoxyphenyl)-2,2-difluoropent-3-enoate (6d). The product (64 mg, 71% yield, *Z*:*E* = 1:14) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.81 (d, *J* = 8.2 Hz, 1H), 6.70 (dd, *J* = 8.2 Hz, 1.8 Hz, 1H), 6.66 (d, *J* = 1.8 Hz, 1H). 6.50-6.35 (m, 1H), 5.75-5.60 (m, 1H), 4.32 (q, *J* = 7.2 Hz, 2H), 3.87 (s, 6H), 3.46-3.38 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.1 (dd, *J* = 10.9 Hz, 3.1 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 164.0 (t, *J* = 34.6 Hz), 148.9, 147.7, 138.6 (t, *J* = 8.9 Hz), 130.1, 122.0 (t, *J* = 25.2 Hz), 120.6, 112.2 (t, *J* = 249.1 Hz), 111.8, 111.2, 63.0, 55.9, 55.8, 37.6, 13.9. MS (EI): m/z (%) 300 (M⁺), 177 (100). HRMS (EI): Calculated for C₁₅H₁₈F₂O₄ (M⁺): 300.1173; Found: 300.1182.

Ethyl (*E*)-2,2-difluoro-5-(p-tolyl)pent-3-enoate (6e). The product (55mg, 72% yield, *Z*:*E* = 1:12) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.2 Hz, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.50-6.35 (m, 1H). 5.75-5.60 (m, 1H), 4.32 (q, *J* =7.2 Hz, 2H), 3.44 (m, 2H), 2.34 (s, 3H), 1.34 (t, *J* =7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.1 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ

164.0 (t, J = 34.8 Hz), 138.6 (t, J = 9.0 Hz), 136.2, 134.6, 129.3, 128.5, 122.0 (t, J = 25.2 Hz), 112.3 (t, J = 248.8 Hz), 62.9, 37.6, 21.0, 13.9. MS (EI): m/z (%) 254 (M⁺), 187, 161 (100). HRMS (EI): Calculated for C₁₄H₁₆F₂O₂ (M⁺): 254.1118; Found: 254.1121.

Ethyl (*E*)-2,2-difluoro-5-(perfluorophenyl)pent-4-enoate (6f). The product (35mg, 35% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 200:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.55-6.40 (m, 2H), 4.34 (q, J = 7.2 Hz, 2H). 3.05 (td, J = 15.6 Hz, 5.6 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.1 (t, J = 15.6 Hz, 2F), -142.9 (dd, J = 21.8 Hz, 7.9 Hz, 2F), -155.4 (t, J = 21.0 Hz, 1F), -162.7 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (t, J = 32.5 Hz), 144.7 (dm, J = 245.0 Hz), 140.1 (td, J = 21.4, 7.5 Hz, 2F), 137.6 (dm, J = 254.7 Hz), 128.1 (m), 120.7, 114.7 (t, J = 253.3 Hz), 111.1, 63.1, 39.4 (t, J = 24.4 Hz), 13.9. MS (EI): m/z (%) 330 (M+), 310, 282 (100). HRMS (EI): Calculated for C₁₃H₉F₇O₂ (M+): 330.0491; Found: 330.0495.

Ethyl (*E*)-5-acetoxy-2,2-difluoropent-3-enoate (6g). The product (34 mg, 51% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 18:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.33 (d, *J* = 16.0 Hz, 1H), 5.94 (dd, *J* = 26.4, 11.6 Hz, 1H), 4.67 (br, 2H). 4.32 (q, *J* = 7.0 Hz, 2H), 2.10 (s, 3H), 1.34 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 163.5, 132.8 (t, *J* = 9.1 Hz), 122.6 (t, *J* = 25.6 Hz), 111.8 (t, *J* = 249.7 Hz), 63.1, 62.3, 20.7, 13.9. MS (EI): m/z (%) 222 (M⁺), 160, 149, 90 (100). HRMS (EI): Calculated for C₉H₁₂F₂O₄ (M⁺): 222.0704; Found: 222.0710.

BocHN CF₂COOEt

Ethyl (*E*)-5-((tert-butoxycarbonyl)amino)-2,2-difluoropent-3-enoate (6h). The product (54 mg, 64% yield, *Z*:*E* = 1:20) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 12:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.26 (d, *J* = 15.6 Hz, 1H), 5.80 (q, *J* = 12.8 Hz, 1H), 4.78 (br, 1H). 4.29 (q, *J* = 7.2 Hz, 2H), 3.85 (s, 2H), 1.42 (s, 9H), 1.32 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.6 (d, *J* = 10.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, *J* = 34.6 Hz), 155.5, 136.1(t, *J* = 8.7 Hz), 121.4(t, *J* = 25.4 Hz), 112.1(t, *J* = 249.3 Hz), 79.8, 63.0, 41.0, 28.2, 13.8. MS (EI): m/z (%) 279 (M+), 264, 223. HRMS (EI): Calculated for C₁₂H₁₉NF₂O₄ (M+): 279.1282; Found: 279.1277.

(*E*)-2-(4,4,5,5,6,6,7,7,7-Nonafluorohept-2-en-1-yl)phenol (6i). The product (99 mg, 94% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H). 6.78 (d, *J* = 8.0 Hz, 1H), 6.68-6.56 (m, 1H), 5.62 (dd, *J* =27.2 Hz, 12.8 Hz, 1H), 5.00 (s, 1H), 3.55 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (t, *J* = 8.8 Hz, 3F), -110.5 (m, 2F), -123.4 (t, *J* = 13.3 Hz, 2F), -124.8 (t, *J* = 10.2 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 141.0 (t, *J* = 9.0 Hz), 130.6, 128.3, 123.8, 121.2, 121.0-105.0 (m), 117.6 (t, *J* = 23.1 Hz), 115.4, 32.6. MS (EI): m/z (%) 352 (M⁺), 133 (100). HRMS (EI): Calculated for C₁₃H₉F₉O (M⁺): 352.0510; Found: 352.0504.

(*E*)-2-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluoronon-2-en-1-yl)phenol (6j). The product (99 mg, 73% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as

colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (td, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 6.92 (td, *J* = 7.2 Hz, 1.2 Hz, 1H). 6.77 (d, *J* = 8.0 Hz, 1H), 6.65-6.55 (m, 1H), 5.60 (dd, *J* = 28.0 Hz, 12.8 Hz, 1H), 4.74 (s, 1H), 3.54 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (t, *J* = 9.4 Hz, 3F), -118.6 (m, 2F), -129.0 (m, 2F), -130.2 (m, 2F), -130.7 (m, 2F), 133.5 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 140.9 (t, *J* = 9.0 Hz), 130.6, 128.3, 123.8, 121.2, 121.0-105.0 (m), 117.7 (t, *J* = 23.1 Hz), 115.4, 32.6. MS (EI): m/z (%) 452 (M⁺), 133 (100), 105. HRMS (EI): Calculated for C₁₅H₉F₁₃O (M⁺): 452.0446; Found: 452.0445.

(*E*)-2-Methoxy-6-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6k). The product (100 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.82 (q, *J* = 7.9 Hz, 1H), 6.81 (s, 1H), 6.71 (d, *J* = 7.2 Hz, 1H), 6.65-6.55 (m, 1H), 5.75 (s, 1H), 5.62 (dd, *J* =28.0 Hz, 12.8 Hz, 1H), 3.90 (s, 3H), 3.55 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (t, *J* = 9.6 Hz, 3F), -111.6 (m, 2F), -124.4 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 143.6, 141.1 (t, *J* = 9.0 Hz), 123.1, 122.2, 122.0-105.0 (m), 119.7, 117.4 (t, *J* = 23.1 Hz), 109.3, 55.9, 32.2. MS (EI): m/z (%) 382 (100) (M⁺), 161, 131. HRMS: Calculated for C₁₄H₁₁F₉O₂ (M⁺): 382.0615; Found:382.0617.

(*E*)-2-Methoxy-6-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoronon-2-en-1-yl)phenol (6l). The product (127 mg, 88% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 12:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.85-6.75 (m, 2H), 6.71 (d, *J* = 7.2 Hz, 1H), 6.65-6.63 (m, 1H), 5.74 (s, 1H), 5.62 (dd, *J* =26.8 Hz, 12.8 Hz, 1H), 3.90 (s, 3H), 3.55 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.9 (m, 3F), -111.4 (m, 2F), -121.8 (m, 2F), -123.0 (m, 2F), -123.5 (m, 2F), 126.3 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 143.6, 141.0 (t, *J* = 9.1 Hz), 123.1, 122.1,

119.7, 120.0-105.0 (m), 117.5 (t, J = 23.4 Hz), 109.3, 56.0, 32.2. MS (EI): m/z (%) 482 (M⁺), 163, 131(100). HRMS (EI): Calculated for C₁₆H₁₁F₁₃O₂ (M⁺): 482.0551; Found: 482.0544.

(*E*)-4-Ethyl-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6m). The product (84 mg, 74% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 12:1) as a colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (dd, *J* = 8.2 Hz, 1.8 Hz, 1H), 6.93 (s, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.65-6.55 (m, 1H), 5.62 (dd, *J* =27.6 Hz, 12.6 Hz, 1H), 4.79 (s, 1H), 3.52 (m, 2H), 2.58 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (m, 3F), -111.6 (m, 2F), -124.4 (m, 2F), -125.8 (t, *J* = 10.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 141.2 (t, *J* = 9.0 Hz), 137.0, 129.9, 127.4, 123.5, 121.0-105.0 (m), 117.5 (t, *J* = 23.1 Hz), 115.3, 32.7, 27.9, 15.7. MS (EI): m/z (%) 380 (M⁺), 365 (100). HRMS(EI): Calculated for C₁₅H₁₃F₉O (M⁺): 380.0823; Found: 380.0830.

(*E*)-4-Methoxy-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6n). The product (95 mg, 83% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.70 (m, 2H), 6.66 (s, 1H), 6.59 (m, 1H), 5.62 (dd, *J* = 27.2 Hz, 12.4 Hz, 1H), 4.76 (s, 1H), 3.76 (s, 3H), 3.50 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (m, 3F), -111.6 (m, 2F), -124.4 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 147.4, 140.8 (t, *J* = 9.1 Hz), 124.9, 122.0-105.0 (m), 117.7 (t, *J* = 23.1 Hz), 116.1, 116.0, 113.1, 55.7, 32.8. MS (EI): m/z (%) 382 (100) (M⁺), 367, 362. HRMS(EI): Calculated for C₁₄H₁₁F₉O₂ (M⁺): 382.0615; Found: 382.0621.

(*E*)-4-Fluoro-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (60). The product (83 mg, 75% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 12:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.90-6.75 (m, 2H), 6.75-6.65 (m, 1H), 6.62-6.50 (m, 1H), 5.62 (dd, *J* =27.2 Hz, 12.6 Hz, 1H), 4.87 (br, 1H), 3.50 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.2 (m, 3F), -111.7 (m, 2F), -123.6 (m, 1F), -124.4 (m, 2F), -125.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 157.1 (d, *J* = 239.8 Hz), 149.5 (d, *J* = 2.2 Hz), 140.2 (t, *J* = 9.0 Hz), 125.4 (d, *J* = 7.4 Hz), 120.0-105.0 (m), 118.1 (t, *J* = 23.2 Hz), 116.8 (d, *J* = 23.3 Hz), 116.1 (d, *J* = 8.3 Hz), 114.4 (d, *J* = 23.1 Hz), 32.6. MS (EI): m/z (%) 370 (M⁺), 151 (100). HRMS (EI): Calculated for C₁₃H₈F₁₀O (M⁺): 370.0415; Found: 370.0410.

(*E*)-*N*-(4-Hydroxy-3-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenyl)acetamide (6p). The product (110 mg, 90% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 2:1) as white solid. ¹H NMR (400 MHz, d^6 -Acetone) δ 8.96 (br, 1H), 8.42 (s, 1H), 7.38 (s, 1H), 7.37 (m, 1H), 6.80 (d, J = 8.4 Hz, 1H), 6.75-6.63 (m, 1H), 5.81 (dd, J = 28.0 Hz, 13.2 Hz, 1H), 3.55 (m, 2H), 2.02 (s, 3H). ¹⁹F NMR (376 MHz, d^6 -Acetone) δ -86.3 (m, 3F), -115.9 (m, 2F), -129.2 (m, 2F), -130.7 (m, 2F). ¹³C NMR (101 MHz, d^6 -Acetone) δ 168.4, 152.0, 143.6 (t, J = 9.4 Hz), 133.1, 124.8, 122.6, 120.4, 120.0-105.0 (m), 117.3 (t, J = 22.7 Hz), 115.9, 33.6, 24.1. MS (EI): m/z (%) 409 (M⁺), 367 (100). HRMS: Calculated for C₁₅H₁₂F₉NO₂ (M⁺): 409.0724; Found:409.0731.

(*E*)-1-(4-Hydroxy-3-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenyl)ethan-1-one (6q). The product (83 mg, 70% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 12:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, *J* = 8.6 Hz, 1.8 Hz, 1H), 7.77 (s, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.79 (s, 1H), 6.65-6.53 (m, 1H), 5.62 (dd, *J* =27.2 Hz, 12.4 Hz, 1H), 3.58 (m, 2H), 2.56 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.1 (m, 3F), -110.7 (m, 2F), -123.4 (m, 2F), -124.9 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 158.8, 140.3 (t, *J* = 9.1 Hz), 131.5, 130.2, 129.7, 124.2, 120.0-105.0 (m), 118.0 (t, *J* = 23.2 Hz), 115.3, 32.7, 26.2. MS (EI): m/z (%) 394 (M⁺), 379 (100), 359. HRMS: Calculated for C₁₅H₁₁F₉O₂ (M⁺): 394.0615; Found:394.0617.

Ethyl 3-(2,3-dihydrobenzofuran-2-yl)-2,2-difluoropropanoate (7a). This compound is known.⁹ The product (31.5 mg, 41% yield) was purified with silica gel chromatography (Petroleum ether /Ethyl acetate = 10:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 7.2 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.86 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.06-4.99 (m, 1H), 4.40-4.32 (m, 2H), 3.42 (dd, J = 15.6, 8.8 Hz, 1H), 2.94 (dd, J = 15.6, 7.2 Hz, 1H), 2.80-2.65 (m, 1H), 2.46-2.34 (m, 1H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5 – -102.5 (m, 1F), -107.4 – -108.4 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (t, J = 31.4 Hz), 158.6, 128.2, 125.7, 124.9, 120.8, 114.7 (t, J = 249.9 Hz), 109.6, 76.5 (dd, J = 7.3, 2.9 Hz), 63.0, 40.8 (t, J = 23.1 Hz), 35.8, 13.9. MS (EI): m/z (%) 256 (M⁺), 256, 133 (100), 91. HRMS (EI): Calculated for C₁₃H₁₄F₂O₃ (M⁺): 256.0911; Found: 256.0914.

Ethyl 3-(5-chloro-2,3-dihydrobenzofuran-2-yl)-2,2-difluoropropanoate (**7b**). The product (45 mg, 52% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (s, 1H), 7.06 (dd, J = 8.2 Hz, 2.2 Hz, 1H), 6.62 (d, J = 8.8 Hz, 1H), 5.08-5.01 (m, 1H), 4.39-4.31 (m, 2H), 3.39 (dd, J = 15.8 Hz, 9.0 Hz, 1H), 2.93 (dd, J = 15.8 Hz, 7.2 Hz, 1H), 2.78-2.63 (m, 1H), 2.45-2.34 (m, 1H), 1.35 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.7 – -102.4 (m, 1F), -107.3 – -108.1 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, J = 32.2 Hz), 157.3, 128.1, 127.7, 125.5, 125.0, 114.6 (t, J = 251.9 Hz), 110.4, 77.2 (dd, J = 7.2, 3.2 Hz), 63.1, 40.6 (t, J = 23.2 Hz), 35.6, 13.9. MS (EI): m/z (%) 292 (M⁺), 290 (100) (M⁺), 167, 125. HRMS (EI): Calculated for C₁₃H₁₃F₂ClO₃ (M⁺): 290.0521; Found: 290.0520.

Ethyl 2,2-difluoro-3-(5-formyl-2,3-dihydrobenzofuran-2-yl)propanoate (7c). The product (64 mg, 75% yield) was purified with silica gel chromatography (Petroleum ether /Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.73 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 5.20-5.10 (m, 1H), 4.35 (q, *J* = 6.8 Hz, 2H), 3.48 (dd, *J* = 16.0, 9.2 Hz, 1H), 3.00 (dd, *J* = 15.6, 7.2 Hz, 1H), 2.82-2.65 (m, 1H), 2.52-2.38 (m, 1H), 1.36 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -109.1 – -109.9 (m, 1F), -114.2 – -115.0 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 164.0, 163.5 (t, *J* = 32.2 Hz), 133.1, 130.8, 127.3, 126.0, 114.4 (t, *J* = 252.3 Hz), 109.8, 78.2 (dd, *J* = 6.9, 3.1 Hz), 63.1, 40.6 (t, *J* = 23.3 Hz), 34.8, 13.9. MS (EI): m/z (%) 284 (M⁺), 133, 91 (100). HRMS (EI): Calculated for C₁₄H₁₄F₂O₄ (M⁺): 284.0860; Found: 284.0865.

Ethyl 3-(5-acetyl-2,3-dihydrobenzofuran-2-yl)-2,2-difluoropropanoate (7d). This compound is

known.⁹ The product (61 mg, 68% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.80 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.17-5.09 (m, 1H), 4.40-4.30 (m, 2H), 3.42 (dd, J = 16.0 Hz, 9.2 Hz, 1H), 2.98 (dd, J = 15.6 Hz, 6.8 Hz, 1H), 2.80-2.66 (m, 1H), 2.54 (s, 3H), 2.50-2.38 (m, 1H), 1.36 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.5 – -102.8 (m, 1F), -107.0 – -108.2 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 163.6 (t, J = 31.6 Hz), 162.8, 131.1, 130.6, 126.5, 125.6, 114.5 (t, J = 252.1 Hz), 109.2, 78.0 (dd, J = 7.0, 3.1 Hz), 63.1, 40.7 (t, J = 23.3 Hz), 35.1, 26.4, 13.9. MS (EI): m/z (%) 298 (M⁺), 283 (100), 255. HRMS (EI): Calculated for C₁₅H₁₆F₂O₄ (M⁺): 298.1017; Found: 298.1012.

Ethyl 2,2-difluoro-3-(7-methoxy-2,3-dihydrobenzofuran-2-yl)propanoate (7e). This compound is known.⁹ The product (39 mg, 45% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 10:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.84-6.78 (m, 2H), 6.74 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 5.10-5.03 (m, 1H), 4.40-4.30 (m, 2H), 3.84 (s, 3H), 3.42 (dd, *J* = 15.6 Hz, 9.2 Hz, 1H), 3.00 (dd, *J* = 15.6 Hz, 7.4 Hz, 1H), 2.87-2.73 (m, 1H), 2.50-2.38 (m, 1H), 1.34 (t, *J* = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.8 – -102.6 (m, 1F), -107.1 – -108.1 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, *J* = 32.2 Hz), 146.9, 144.5, 127.1, 121.5, 117.1, 114.7 (t, *J* = 251.7 Hz), 111.4, 77.2 (dd, *J* = 6.9, 3.1 Hz), 63.1, 55.8, 40.6 (t, *J* = 22.9 Hz), 36.2, 13.8. MS (EI): m/z (%) 286 (100) (M⁺), 246, 131. HRMS (EI): Calculated for C₁₄H₁₆F₂O₄ (M⁺): 286.1017; Found: 286.1014.

5. References.

- [1] W.-L. Deng, Y.-J. Li, Y.-G. Li, H.-L. Bao, Synthesis. 2018, 50, 2974.
- [2] F.-H. Xiao, F.-H. Wu, Y.-J. Shen, L.-F. Zhou, J. Fluorine Chem., 2005, 126, 63.
- [3] I. Behrends, S. Bähr, C. Czekelius, Chem. -Eur. J., 2016, 22, 17177.

[4] R. Beniazza, L. Remisse, D. Jardel, D. Lastécouères, J-M. Vincent, *Chem. Commun.* 2018, 54, 7451.

[5] T. Xu, C.-W. Cheung, X. Hu, Angew. Chem. Int. Ed., 2014, 53, 4910.

[6] J.-J. Ma, W.-B. Yi, Org. Biomol. Chem., 2017, 15, 4295.

[7] J.-J. Zhong, C. Yang, X.-Y. Chang, C. Zou, W. Lu, C. -M. Che, *Chem. Commun.* 2017, 53, 8948.

[8] M.-L. Ke, Q. Feng, K. Yang, Q.-L. Song, Org. Chem. Front., 2016, 3, 150.

[9] J.-H. Liao, L.-F. Fan, W. Guo, Z.-M. Zhang, J.-W. Li, C.-L. Zhu, Y.-W. Ren, W.-Q. Wu, H.-F. Jiang, *Org. Lett.*, **2017**, *19*, 1008.

6. Mechanism studies.

6.1 Addition of radical and SET inhibitors:

When the radical scavenger TEMPO (2,2,6,6-tetromethyl-1-piperidinyloxy, 1.0 equiv) was added under standard conditions, product **3a** was not observed.

6.2 Radical clock experiments.

Typical procedure: To a 25 mL of Schlenk tube equipped with a Teflon septum were added KOAc (0.6 mmol, 2.0 equiv) under Ar, followed by DCE (2 mL) with stirring. allylbenzene (**1a**) (0.3 mmol, 1.0 equiv) (or without **1a**), 2-bromophenol (0.03mmol, 0.1 equiv), ICF₂COOEt (**2**) (0.6 mmol, 2.0 equiv) and α -cyclopropylstyrene (0.3 mmol, 1.0 equiv) were added subsequently. After stirring for 16 h, the reaction mixture was diluted with Ethyl acetate, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

Ethyl (*E*)-2,2-difluoro-7-iodo-4-phenylhept-4-enoate (8). The product (91 mg, 77% yield) was purified with silica gel chromatography (Petroleum ether/Ethyl acetate = 50:1) as colorless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.19 (m, 5H), 5.79 (t, *J* = 7.2 Hz, 1H), 3.83 (q, *J* = 7.2 Hz, 2H),

3.29 (t, J = 15.6 Hz, 2H), 3.19 (t, J = 7.0 Hz, 2H), 2.81 (q, J = 7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -103.2 – -103.8 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, J = 32.6 Hz), 141.5, 134.2, 132.1 (t, J = 4.2 Hz), 128.2, 127.4, 126.6, 114.8 (t, J = 253.6 Hz), 62.7, 35.6 (t, J = 24.7 Hz), 32.8, 13.5, 4.34. MS (EI): m/z (%) 394 (M⁺), 267, 129 (100). HRMS (EI): Calculated for C₁₅H₁₇F₂IO₂ (M⁺): 394.0241; Found: 394.0230.

> -3.857 -3.839 -3.821 -3.803

- 3.171 2.816 2.798 5.812 5.794 5.776

-7.260

S31

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

6.3 UV-vis spectroscopic measurement.

Solution 1: **2a** (176.4 μ L, 1.2 mmol), 2-bromophenol (7.0 μ L, 0.06 mmol) and KOAc (117.8 mg, 1.2 mmol) was dissolved in DCE (4.0 mL). The mixtures were stirred for 30 seconds, filtered before use.

Solution 2: **2a** (176.4 μ L, 1.2 mmol) and 2-bromophenol (7.0 μ L, 0.06 mmol) was dissolved in DCE (4.0 mL). The mixtures were stirred for 30 seconds, filtered before use.

Solution 3: **2a** (176.4 μ L, 1.2 mmol) and KOAc (117.8 mg, 1.2 mmol) was dissolved in DCE (4.0 mL). The mixtures were stirred for 30 seconds, filtered before use.

Solution 4: **2a** (176.4 μ L, 1.2 mmol) was dissolved in DCE (4.0 mL). The mixtures were stirred for 30 seconds, filtered before use.

Solution 5: 2-bromophenol (11.6 µL 0.1 mmol) and KOAc (117.8 mg, 1.2 mmol) was dissolved in DCE (4.0 mL). The mixtures were stirred for 30 seconds, filtered before use.

Performed on UV visible spectrophotometer, recorded in 1cm path quartz cuvettes using T6 Xinyue visible spectrophotometer (PERSEETM), pure DCE as blank sample.

A	2a +	2a +	2a +	2a +DCE	2-bromophenol
	2-bromophenol	2-bromophenol	KOAc +DCE		+ KOAc +DCE
	+ KOAc +DCE	+ DCE			
λ (nm)	A_1	A_2	A ₃	A_4	A ₅
360	3.044	1.069	1.223	1.071	0.061
370	2.967	0.549	0.709	0.548	0.054
380	2.677	0.264	0.411	0.260	0.055
390	2.253	0.133	0.258	0.126	0.053
400	1.570	0.087	0.185	0.078	0.051
410	1.099	0.079	0.149	0.071	0.047
420	0.788	0.103	0.153	0.094	0.046
430	0.568	0.161	0.194	0.153	0.043
440	0.430	0.249	0.270	0.242	0.047
450	0.325	0.373	0.381	0.367	0.042
460	0.247	0.520	0.515	0.515	0.042
470	0.192	0.660	0.644	0.653	0.043
480	0.148	0.792	0.767	0.787	0.040
490	0.120	0.874	0.843	0.868	0.041
500	0.100	0.897	0.865	0.889	0.040
510	0.086	0.857	0.840	0.851	0.040
520	0.075	0.776	0.772	0.771	0.037

6.4 The reaction of different time periods was examined by HPLC to detect the concentration of 2-bromophenol.

Making a standard curve

The solution A (c = 0.06 mmol/mL): mixed 2-bromophenol (69.6 μ L, 0.6 mmol) and DCE (10.0 mL)

The solution B (c = 0.03 mmol/mL): mixed phenol (28.2 mg, 0.3 mmol) and DCE (10.0 mL)

Sample 1 (2 mL): mixed the solution A (0.17 mL), the solution B (1.00 mL) and DCE

Sample 2 (2 mL): mixed the solution A (0.33 mL), the solution B (1.00 mL) and DCE

Sample 3 (2 mL): mixed the solution A (0.50 mL), the solution B (1.00 mL) and DCE

Sample 4 (2 mL): mixed the solution A (0.67 mL), the solution B (1.00 mL) and DCE

Sample 5 (2 mL): mixed the solution A (0.83 mL), the solution B (1.00 mL) and DCE

Sample 6 (2 mL): mixed the solution A (1.00 mL), the solution B (1.00 mL) and DCE

All of the samples were determined by HPLC to measure the content of 2-bromophenol to make a standard curve. A phenol was selected as an internal standard. (V_{H2O} : $V_{MeCN} = 60:40$, 1 mL/min, 254 nm, 25 °C, Inj Volume = 20 µL, Time = 30 min).

To six 25 mL of Schlenk tubes equipped with Teflon septum were added KOAc (0.6 mmol, 2.0 equiv) under argon respectively, followed by DCE (2.0 ml) with stirring. 2-bromophenol (0.03 mmol, 0.1 equiv), allylbenzene (**1a**) (0.3 mmol, 1.0 equiv) and ICF₂COOEt (**2a**) (0.60 mmol, 2.0 equiv) were added subsequently. one Schlenk tube was removed. The remaining five Schlenk tubes were stirred at room temperature under 12w blue LEDs for 3 h, 6 h, 9 h, 12h and 16 h. After each reaction was stoped, 0.5 mL of phenol (C = 0.075 mmol/mL) was added as an internal standard, subsequently filtered for HPLC detection.

	2-bromophenol (A)			phenol (B)			
Entry	Ret. Time (min)	Area	C (mmol/mL)	Ret. Time (min)	Area	C (mmol/mL)	A/B
1	8.46	2470.858	0.005	5.581	6770.840	0.015	0.3649
2	8.49	4464.328	0.010	5.602	6742.690	0.015	0.6621
3	8.46	6739.670	0.015	5.581	6807.432	0.015	0.9900
4	8.48	8506.987	0.020	5.573	6782.561	0.015	1.2542
5	8.48	10753.571	0.025	5.590	6732.406	0.015	1.5973
6	8.47	12933.962	0.030	5.588	6537.696	0.015	1.9784

Standard curve of 2-bromophenol using phenol as internal standard

+ ICF ₂ COOEt DCE, r.t, 16 h					
	1a	2a	3	3a	
Entry	Area A (2-bromophenol)	Area B (Phenol)	A/B (y)	Calculated concentration A (y=64.907x mmol/mL)	Actual concentration A (mmol/mL)
0 h	5214.82	6276.87	0.8308	0.0128	0.0120
3 h	4636.90	5946.84	0.7797	0.0120	0.0120
6 h	5040.79	6776.42	0.7439	0.0115	0.0120
9 h	4911.38	6566.38	0.7479	0.0115	0.0120
12 h	4594.28	6279.82	0.7316	0.0113	0.0120
16 h	4723.24	6399.03	0.7381	0.0114	0.0120

6.5 No products were observed when phenolic hydroxyl group was protected or in the absence

of hrdroxyl group.

6.6 Tranform 3a to 6a in the presence of K₂CO₃ and DMSO.

7. Copies of NMR spectra of 3, 5, 6, 7.

Ethyl 2,2-difluoro-4-iodo-5-phenylpentanoate (3a).

Ethyl 2,2-difluoro-4-iodo-5-(4-methoxyphenyl)pentanoate (3b).

Ethyl 2, 2-difluoro-4-iododecanoate (3d).

Ethyl 8-bromo-2,2-difluoro-4-iodooctanoate (3e).

Ethyl 2,2-difluoro-6-hydroxy-4-iodohexanoate (3f).

5-Ethoxy-4,4-difluoro-2-iodo-5-oxopentyl picolinate (3g).

Ethyl 5-acetoxy-2,2-difluoro-4-iodopentanoate (3i).

(4,4,5,5,6,6,7,7,7-Nonafluoro-2-iodoheptyl)benzene (3l).

1,1,1,2,2,3,3,4,4-Nonafluoro-6-iododecane (3m).

Tert-butyl (4,4,5,5,6,6,7,7,7-nonafluoro-2-iodoheptyl)carbamate (3n).

Ethyl 2,2-difluoro-5-(2-hydroxyphenyl)-4-iodopentanoate (30).

Ethyl 2,2-difluoro-5-(2-hydroxy-5-methylphenyl)-4-iodopentanoate (3p).

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Ethyl 2,2-difluoro-5-(2-hydroxy-3-methoxyphenyl)-4-iodopentanoate (3r).

163.824 163.501 163.178	146.385 143.725	124.767 123.002 119.364 117.711 115.219 115.189 115.189 112.697 109.533	77.318 77.000 76.682	63.158	55.933	44.421 44.185 43.950 42.279	20.435 20.390 20.350	13.840
\checkmark	57		\checkmark	1		\checkmark		1

Ethyl (E)-2,2-difluoro-4-iododec-3-enoate (5a).

Ethyl (E)-2,2-difluoro-4-iodo-4-(p-tolyl)but-3-enoate (5f).

f1 (ppm)

Ethyl (E)-2,2-difluoro-4-iodo-4-(3-methoxyphenyl)but-3-enoate (5h).

Methyl (E)-3-(4-ethoxy-3,3-difluoro-1-iodo-4-oxobut-1-en-1-yl)benzoate (5i).

Ethyl (E)-2,2-difluoro-4-iodo-4-(pyridin-3-yl)but-3-enoate (5k).

(E)-1-Methoxy-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohex-1-en-1-yl)benzene (5l).

(E)-5,5,6,6,7,7,8,8,8-Nonafluoro-3-iodooct-3-en-1-ol (5m).

(E)-1-Methyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-iodooct-1-en-1-yl)benzene (5n).

Ethyl (E)-2,2-difluoro-5-(4-methoxyphenyl)pent-3-enoate (6b).

Ethyl (E)-2,2-difluoro-5-(2-methoxyphenyl)pent-3-enoate (6c).

Ethyl (E)-5-(3,4-dimethoxyphenyl)-2,2-difluoropent-3-enoate (6d).

Ethyl (E)-2,2-difluoro-5-(p-tolyl)pent-3-enoate (6e).

Ethyl (E)-2,2-difluoro-5-(perfluorophenyl)pent-4-enoate (6f).

Ethyl (E)-5-acetoxy-2,2-difluoropent-3-enoate (6g).

Ethyl (E)-5-((tert-butoxycarbonyl)amino)-2,2-difluoropent-3-enoate (6h).

(*E*)-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6i).

(*E*)-2-methoxy-6-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoronon-2-en-1-yl)phenol (6l).

(E)-4-ethyl-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6m).

(E)-4-methoxy-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (6n).

(E)-4-fluoro-2-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenol (60).

(*E*)-N-(4-hydroxy-3-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenyl)acetamide (6p).

f1 (ppm)

(*E*)-1-(4-hydroxy-3-(4,4,5,5,6,6,7,7,7-nonafluorohept-2-en-1-yl)phenyl)ethan-1-one (6q).

Ethyl 3-(2,3-dihydrobenzofuran-2-yl)-2,2-difluoropropanoate (7a).

Ethyl 2,2-difluoro-3-(5-formyl-2,3-dihydrobenzofuran-2-yl)propanoate (7c).

S117