## Supporting Information

### A Strategy to Construct Fluorescent Non-aromatic Small-Molecules:

Hydrogen Bonds Contributing to the Unexpected Fluorescence<sup>+</sup>

Ruifang Guan, \* Baoli Dong, Cui Xu, Hao Zhang, Duxia Cao, Weiying Lin\*

School of Materials Science and Engineering, Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, China.

Correspondence and requests for materials should be addressed to R.G. (email: mse\_guanrf@ujn.edu.cn) or W.L. (email: weiyinglin2013@163.com)

# Table of content

#### **Experimental Section**

Cell imaging. Quantum chemistry calculation method.

Table S1. Crystal data, date collections, and structure refinements of solid PDH

Table S2. Information of hydrogen bonds in PDH crystal

**Table S3.**Kamlet-Taft parameters of various solvents of PDH solution and their absorption, excitation, emission wavelength, and absolute fluorescent quantum yield (Yf)

**Table S4.**  $\tau 1$ ,  $\tau 2$  and  $\tau$  of PDH in powders, acetone and ethanol

- Figure S1. (a) <sup>1</sup>H NMR, (b) <sup>13</sup>C NMR spectra, (c) heteronuclear single quantum coherence (HSQC) spectrum of PDH in DMSO-d<sub>6</sub>. (d) ESI-MS Spectrum of PDH. m/z=131 : [M–H]<sup>-</sup>
- Figure S2. Hydrogen bonds in PDH crystal
- **Figure S3.** Fluorescent lifetime decay curves of PDH in powders, ethanol and acetonitrile
- **Figure S4.** (a) redox spectrum of cyclic voltammetry and (b) overlapping peaks of absorption spectrum of PDH in dichloromethane.
- Figure S5. The optimized molecular structure of the PDH methanol solution calculated by RB3LYP TD-FC quantum chemistry calculation method
- **Figure S6.** The optimized molecular structure of the PDH calculated by RB3LYP TD-FC quantum chemistry calculation method
- Figure S7. The variation of the emission spectra of PDH in EtOH/Acetone mixtures.
- Figure S8. Molecular structures of acethydrazide (C1), oxalyldihydrazide (C2), Succinic hydrazide (C3) and glutaryl hydrazide (C4)
- Figure S9. a) Top view, and b) front view of the optimized molecular structure of the C2, c) top view, and d) front view of the optimized molecular structure of C3 calculated by RB3LYP TD-FC quantum chemistry calculation method.
  e) The picture under daylight and f) fluorescence picture of C3 solution (in 1H<sub>2</sub>O, 2 DMSO, 3 DMF, 4 MeOH ) excited at 365nm, g) the picture under daylight and h) fluorescence picture of C3 solid excited at 365nm
- Figure S10. Emission spectra of PDH and PDH+  $ClO^-$  ( $\lambda_{ex}$ =410 nm). The concentration of PDH and  $ClO^-$  are 0.01g /L and 30µm respectively

Figure S11. Emission spectra of PDH in ethanol/glycerol mixtures with different fractions of glycerol ( $\lambda_{ex}$ =410 nm). All of the concentration of PDH in mixtures is 1×10<sup>-4</sup> mol/ L

### **Experimental Section**

**Cell imaging.** Human neuroblastoma SH-SY5Y cells were cultured in Dulbecco's modified eagle medium (DMEM) supplemented with 10% FBS (fetal bovine serum) and incubated at 37 °C in air atmosphere (5% CO<sub>2</sub>). For fluorescence imaging, the cells were seeded into glass bottom dishes with appropriate density. After 24 h, the cells were first incubated with 5  $\mu$ M dye for 30 min at 37 °C and washed three times with PBS (pH 7.4) to remove excess extracellular dye.

**Crystallographic information.** Single colourless block crystals of P were used as supplied. A suitable crystal with dimensions  $0.12 \times 0.11 \times 0.10 \text{ mm}^3$  was selected and mounted on a XtaLAB Synergy, Dualflex, HyPix diffractometer controlled by CrysAlisPro 1.171.39.46 (Rigaku OD, 2018). The crystal was kept at a steady T = 293(2) K during data collection. The structure was solved using SheLXL-2014/7(Sheldrick, 2014) and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL-2014/7 (Sheldrick, 2014) using full matrix least squares minimisation on  $F^2$ . 5659 reflections measured, 1388 unique (Rint = 0.0400) which were used in all calculations.

**Quantum chemistry calculation method.** B3LYP/6-31G calculations were performed by Gaussian 09, Revision B.01.

**Materials.** Diethyl malonate, hydrazine hydrate, acethydrazide, oxalyldihydrazide, succinic hydrazide and glutaryl hydrazide were purchased from Aladdin Industrial Corporation (China). Methanol, ethanol, glycol, dimethyl sulfoxide (DMSO), acetonitrile (ACN), tetrahydrofuran (THF), dioxane, cyclohexane and N-hexane were purchased from Sinopharm Chemical Reagent Co., Ltd. All reagents are of analytical reagent grade and used as received.

**Apparatus.** Cell data of single crystal were measured by Rigaku XtaLAB Synergy diffractometer coupled to a Rigaku Hypix detector with Cu K $\alpha$  radiation ( $\lambda = 1.54184$ Å) from PhotonJet micro-focus X-ray sources (Japan). The fluorescence pictures of single crystal were recorded by Nikon A1MP confocal microscopy. Ultraviolet-Visible photoluminescence were recorded by Shimadzu UV2550 and spectra spectrophotometer and Fluoromax-4 spectrophotometer (Horiba JY, France) respectively. quantum yields were measured by Absolute Fluoromax-3 spectrophotometer (Horiba JY, France). Dilute solutions in water were placed in quartz cuvettes (1.0 cm pathlength) using Combined Measurement System for Infrared Fluorescence (NanologR FluoroLog-3-2-iHR320). MS spectra were recorded by

Liquid Chromatograph-Induced Coupled Plasma Mass Spectrometry (Nexion 300x, USA). The <sup>1</sup>H-NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer (Swiss), and solvent is DMSO-d6. Fluorescent lifetimes are measured by Steady State and Transient State Fluorescence Spectrometer (FLS980, Edinburgh Instruments, UK). Elemental analyses were determined Vario EL III elemental analyzer (Elementar, Ger.). Electrochemical measurements were carried out with a CHI760D voltammetric analyzer.

| compound                               | l                                                            |   |
|----------------------------------------|--------------------------------------------------------------|---|
| CCDC                                   | CCDC 1968023                                                 |   |
| Formula                                | C <sub>3</sub> H <sub>10</sub> N <sub>4</sub> O <sub>3</sub> | — |
| $\overline{D_{calc}/\text{g cm}^{-3}}$ | 1.458                                                        | — |
| $\mu/\text{mm}^{-1}$                   | 0.127                                                        |   |
| Formula Weight                         | 150.15                                                       |   |
| Colour                                 | colourless                                                   |   |
| Shape                                  | block                                                        |   |
| Size/mm <sup>3</sup>                   | 0.12×0.11×0.10                                               |   |
| T/K                                    | 293(2)                                                       |   |
| Crystal System                         | monoclinic                                                   |   |
| Space Group                            | P2 <sub>1</sub> /c                                           |   |
| a/Å                                    | 9.1606(6)                                                    |   |
| b/Å                                    | 9.7305(6)                                                    |   |
| c/Å                                    | 7.8691(6)                                                    |   |
| $\alpha/^{\circ}$                      | 90                                                           |   |
| β/°                                    | 102.839(7)                                                   |   |
| γ/°                                    | 90                                                           |   |
| V/Å <sup>3</sup>                       | 683.89(8)                                                    |   |
| Ζ                                      | 4                                                            |   |
| Ζ'                                     | 1                                                            |   |
| Wavelength/Å                           | 0.71073                                                      |   |
| Radiation type                         | ΜοΚα                                                         |   |
| $\Theta_{min}/^{\circ}$                | 3.381                                                        |   |
| $\Theta_{max}/^{\circ}$                | 26.367                                                       | _ |
| Measured Refl's.                       | 5659                                                         | _ |
| Ind't Refl's                           | 1388                                                         |   |
| Refl's with I > 2(I)                   | 1162                                                         |   |
| R <sub>int</sub>                       | 0.0400                                                       |   |
| Parameters                             | 110                                                          |   |
| Restraints                             | 0                                                            |   |
| Largest Peak                           | 0.268                                                        |   |
| Deepest Hole                           | -0.180                                                       |   |
| GooF                                   | 1.050                                                        |   |
| $wR_2$ (all data)                      | 0.0829                                                       |   |
| wR <sub>2</sub>                        | 0.0791                                                       |   |
| $R_1$ (all data)                       | 0.0403                                                       | _ |
| $R_1$                                  | 0.0330                                                       | - |

 Table S1. Crystal data, date collections, and structure refinements of PDH

 Compound
 P

| D   | Н    | А   | d DA (Å)   |
|-----|------|-----|------------|
| N1  | H1A  | 01  | 3.2738(16) |
| N1  | H1A  | O2  | 2.9815(15) |
| N1  | H1B  | 01  | 3.0348(17) |
| N2  | H2   | 01  | 2.8210(15) |
| N3  | Н3   | O1W | 2.9033(16) |
| N4  | H4A  | O2  | 2.9778(15) |
| N4  | H4B  | O1W | 3.1986(17) |
| O1W | H1WA | N1  | 2.9114(16) |
| O1W | H1WB | N4  | 2.8943(17) |

Table S2. Information of hydrogen bonds in PDH crystal

**Table S3.** Kamlet-Taft parameters of various solvents of PDH solution and their absorption, excitation, emission wavelength, and absolute fluorescent quantum yield (Yf)

| Solvent               | 3        | α        | β    | π*   | $\lambda_{Abs.}(nm)$ | $\lambda_{Ex.}(nm)$ | $\lambda_{Em.}(nm)$ | Y <sub>f</sub> (%) |
|-----------------------|----------|----------|------|------|----------------------|---------------------|---------------------|--------------------|
| EtOH                  | 24.<br>3 | 0.8<br>6 | 0.75 | 0.54 | 412                  | 410                 | 516                 | 11.74              |
| МеОН                  | 33.<br>0 | 0.9<br>8 | 0.66 | 0.60 | 413                  | 410                 | 525                 | 13.76              |
| Glycol                | 37.<br>7 | 0.9<br>0 | 0.52 | 0.92 | 422                  | 417                 | 532                 | 36.52              |
| H <sub>2</sub> O      | 80.<br>0 | 1.1<br>7 | 0.47 | 1.09 | 422                  | 426                 | 482                 | -                  |
| ACN                   | 38.<br>0 | 0.1<br>9 | 0.4  | 0.75 | 420                  | 408                 | 475                 | 3.83               |
| Acetone               | 20.<br>7 | 0.0<br>8 | 0.43 | 0.71 | 419                  | 410                 | 473                 | 4.65               |
| Methylene<br>chloride | 8.9      | 0        | 0.3  | 0.82 | 417                  | 413                 | 476                 | 4.08               |
| Dioxane               | 2.3      | 0        | 0.37 | 0.55 | 416                  | 407                 | 465                 | 5.14               |
| THF                   | 7.6      | 0        | 0.55 | 0.55 | 415                  | 410                 | 467                 | 5.68               |
| DMSO                  | 47.<br>2 | 0        | 0.76 | 1.00 | 421                  | 417                 | 485                 | 10.03              |
| Cyclohexane           | 2.0      | 0        | 0    |      | 418                  | 402                 | 455                 | 0.74               |

Herein,  $\varepsilon$ ,  $\alpha$ ,  $\beta$  and  $\pi^*$  representing dielectric constant, hydrogen-bond donation, hydrogen-bond acceptation ability<sup>13</sup> and polarizability of solvent.

Table S3.  $\tau_1, \tau_2$  and  $\tau$  of PDH in powders, acetone and ethanol

|                 | $\tau_1$ (ns) | $\tau_1\%$ | $\tau_2$ (ns) | $\tau_2 \%$ | $\tau$ (ns) |
|-----------------|---------------|------------|---------------|-------------|-------------|
| powder          | 0.87          | 62.35      | 2.57          | 37.65       | 1.51        |
| In ethanol      | 0.76          | 83.93      | 3.26          | 16.07       | 1.16        |
| In acetonitrile | 0.53          | 86.80      | 4.35          | 13.20       | 1.03        |



**Figure S1**. (a) <sup>1</sup>H NMR, (b) <sup>13</sup>C NMR spectra, (c) heteronuclear single quantum coherence (HSQC) spectrum of PDH in DMSO-d<sub>6</sub>. (d) ESI-MS Spectrum of PDH.  $m/z=131 : [M-H]^-$ 



Figure S2. Hydrogen bonds in PDH crystal



Figure S3. Fluorescent lifetime decay curves of PDH in powders, ethanol and acetonitrile



**Figure S4.** (a) redox spectrum of cyclic voltammetry and (b) overlapping peaks of absorption spectrum of PDH in dichloromethane

Figure S4a illustrates that PDH indeed loses or gains electrons, though repeatability is not good because there are no obvious redox half-waves in the line below. From Figure S4a, energy gap is

 $-E_{1/2}^{Oxd1-}$  ( $-E_{1/2}^{Red1}$ )= 1.2809 - (-1.5407) = 2.8217 eV, corresponding  $\lambda=hc/Eg=1240$  / 2.8217 = 439.5 nm. where, *Eg* is the energy band gap of **PDH**, c is the speed of light, h is Planck's constant and l is obtained from the absorption spectra **Figure S4b**.



**Figure S5.** The optimized molecular structure of the PDH methanol solution calculated by RB3LYP TD-FC quantum chemistry calculation method



**Figure S6.** The optimized molecular structure of the PDH calculated by RB3LYP TD-FC quantum chemistry calculation method



Figure S7. The variation of the emission spectra of PDH in EtOH/Acetone mixtures



Figure S8. Molecular structures of acethydrazide (C1), oxalyldihydrazide (C2), Succinic hydrazide (C3) and glutaryl hydrazide (C4)



**Figure S9.** a) Top view, and b) front view of the optimized molecular structure of the **C2**, c) top view, and d) front view of the optimized molecular structure of **C3** calculated by RB3LYP TD-FC quantum chemistry calculation method. e) The picture under daylight and f) fluorescence picture of **C3** solution (in 1H<sub>2</sub>O, 2 DMSO, 3 DMF, 4 MeOH) excited at 365nm, g) the picture under daylight and h) fluorescence picture of **C3** solid excited at 365nm



Figure S10. Emission spectra of PDH and PDH+  $ClO^-$  ( $\lambda_{ex}$ =410 nm). The concentration of PDH and  $ClO^-$  are 0.01g/ L and 30µm respectively

PDH was dissolved in absolute ethanol and the concentration was adjusted to 0.01 g/L. 2 ml of PDH solution was added to a 3 ml quartz cuvette, and then NaClO (30.0  $\mu$ M) was added. The mixture was incubated for 3 minutes prior to fluorescence measurement



**Figure S11.** Emission spectra of PDH in ethanol/glycerol mixtures with different fractions of glycerol ( $\lambda_{ex}$ =410 nm). All of the concentration of PDH in mixtures is 1×10<sup>-4</sup> mol/ L