Tin-Assisted Growth of All-Inorganic Perovskite Nanoplatelets with Controllable Morphologies and Complementary Emissions

Yanxi Ding^a, Tan Li^a, Xiaoyun Li^a, Emmanuel Acheampong Tsiwah^a, Chengzhen Liu^a, Peng Gao^{b,*}, Tao Zeng^c, Yunxia Chen^{c,d}, Xiujian Zhao^a, Yi Xie^{a,*}

^a State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT), No. 122, Luoshi Road, Wuhan 430070, P. R. China.

^b Laboratory of Advanced Functional Materials, Xiamen Institute of Rare-earth Materials, Chinese Academy of Science, No 1300 Jimei Road, Jimei District, 361021, Xiamen, Fujian, P.R. China.

^c School of Materials Science and Engineering, Jingdezhen Ceramic Institute (Xianghu Campus), Xianghu Road, Jingdezhen, Jiangxi 333403, P.R. China.

^d National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute (Xinchang Campus), Taoyang Southern Road, Jingdezhen, Jiangxi, 333000, PR China.

Email:xiey@whut.edu.cn; peng.gao@fjirsm.ac.cn.

Contents

1. Characterization of the CsPbBr3 nanocrystals achieved in the presence of SnBr4错误!未定义书签。

2. Characterization of the $CsPbCl_xBr_{3-x}$ nanocrystals achieved in the presence of $SnCl_4$
3. Characterization of the CsPbBr ₃ nanocrystals achieved in the presence of SnBr ₂ under Ar atmosphere
4. Characterization of the perovskite CsPbCl _{3-x} Br ₃ NC synthesized in the presence of SnCl ₂ under Ar atmosphere
5. Characterization of the CsPbBr ₃ nanocrystals achieved in the presence of SnBr ₂ in the open air
6. Characterization of the CsPbCl _{3-x} Br ₃ nanocrystals synthesized in the presence of SnCl ₂ in the open air
7. Characterization of the CsPbBr ₃ nanocrystals synthesized in the presence of NaBr, tin acetate and TiCl ₄ , respectively
8. Characterization of the WLED devices
9. Anions exchange on the as-synthesized CsPbBr ₃ nanocrystals
References

1. Characterization of the CsPbBr₃ nanocrystals achieved in the presence of SnBr₄

Fig. S1. Multi-peak fitting of the PL spectra for the $CsPbBr_3$ nanocrystals achieved with different Sn:Pb precursor ratios as dictated. The multi-peak-emitting spectra were fitted by the type of Gaussian. The peak positions extracted from the fit are listed in Table S1. The results indicate that the as-synthesized samples consist of NPLs with different sizes (in thickness). The samples are synthesized in the presence of SnBr₄.

Fig. S2. TEM images (a-c), optical absorbance spectra (d) and PL (e) of the aliquots of the $CsPbBr_3$ nanocrystals achieved at different temperatures as dictated, in the absence of precursor Sn:Pb ratios of 2:10. The samples are synthesized in the presence of $SnBr_4$.

Table S1. The summarization on the optical characterization of the CsPbBr₃ nanocrystals achieved in the presence of different Sn:Pb precursor ratios.

Sn:Pb ratio	PL peaks	^a (nm)			FWHM ^b (r			
	Peak1	Peak 2	Peak 3	Peak 4	Peak1	Peak 2	Peak 3	Peak 4
2:10	456.4	477.0	492.0	509.8	13.7	18.8	14.5	23.5
3:10	454.1	509.3			16.8	17.7		
4:10	452.4	509.0			16.2	24.9		
5:10	451.8	506.5			16.9	14.9		

^a Dual PL peaks after deconvolution.

^b Full width at half-maximum (FWHM) of each PL peak after deconvolution.

2. Characterization of the CsPbCl_xBr_{3-x} nanocrystals achieved in the presence of SnCl₄

Fig. S3. XRD patterns raging 20-32 degree of the $CsPbCl_{3-x}Br_3$ nanocrystals achieved with different precursor Sn:Pb ratios as dictated. All the nanocrystals are obtained in the presence of $SnCl_4$.

Fig. S4. TEM images of the perovskite $CsPbCl_{3-x}Br_3$ NC achieved with different precursor Sn:Pb ratios as dictated. All the nanocrystals are obtained in the presence of SnCl₄.

Fig. S5. (a-c) Deconvolution of the PL spectra collected on the $CsPbCl_{3-x}Br_3$ nanocrystals achieved with precursor Sn:Pb ratios of 1:10 (a), 2:10 (b) and 3:10 (c). For data fitting, a doublet was used for each PL spectrum. All the nanocrystals are obtained in the presence of

 $SnCl_4$. (d) PL peak wavelength positions of the fitted peaks of the various $CsPbCl_{3-x}Br_3$ nanocrystals achieved with different precursor Sn:Pb ratios.

Fig. S6. HRTEM image of $CsPbCl_{3-x}Br_3$ nanocrystals upon E-beam irradiation for 10 seconds. The sample was prepared in the presence of $SnCl_4$, by fixing precursor Sn:Pb molar ratio as 2:10.

Fig. S7. Tauc plots of $CsPbBr_3$ nanocrystals formed in the presence of different precursor Sn:Pb ratios as dictated. The samples are synthesized in the presence of $SnCl_4$.

Fig. S8. Survey XPS of Sn-directed synthesized $CsPbBr_3$ nanocrystals and $CsPbCl_xBr_{3-x}$ in the presence of $SnBr_4$ and $SnCl_4$, respectively. It is noteworthy that no Sn signal can be detected in all the as-synthesized samples. Cl signals is present in the sample collected when $SnCl_4$ is added.

3. Characterization of the CsPbBr₃ nanocrystals achieved in the presence of SnBr₂ under Ar atmosphere

Fig. S9. (*a-b*) TEM images of the CsPbBr₃ nanocrystals achieved at $100^{\circ}C$ (*a*) and $130^{\circ}C$ (*b*), respectively. (*c*) Optical absorbance spectra (solid lines) and PL (dash lines) of the aliquots of the CsPbBr₃ nanocrystals achieved at different temperatures as dictated, in the presence of precursor SnBr₂ under Ar atmosphere.

Fig. S10. Optical absorbance spectra (black lines) and PL (red lines) of $CsPbBr_3$ nanocrystals achieved in the presence of different amounts of $SnBr_2$ (denoted as Sn:Pb as dictated) under Ar atmosphere.

4. Characterization of the perovskite CsPbCl_{3-x}Br₃ NC synthesized in the presence of SnCl₂ under Ar atmosphere

Fig. S11. (a-b) TEM images and (c) absorption spectra (solid curves) and PL emissions (dash curves) of the $CsPbCl_xBr_{3-x}$ nanocrystals synthesized in the presence of $SnCl_2$ under Ar atmosphere, with different precursor Sn:Pb ratios as dictated.

Fig. S12. Optical absorbance spectra and PL (a) and XRD patterns (b) of the aliquots of the CsPbBr₃ nanocrystals achieved at different temperatures as dictated, in the absence of precursor Sn:Pb ratio of 2:10.

5. Characterization of the CsPbBr₃ nanocrystals achieved in the presence of SnBr₂ in the open air

Fig. S13. TEM images of the perovskite $CsPbBr_3$ NC achieved with precursor Sn:Pb ratios of 1:10 (a), 2:10 (b), 3:10 (c), 4:10 (d) and 5:10 (e). Insets in each panel present the photographs of corresponding nanocrystals dispersed in hexane under UV light illumination (355 nm excitation wavelength).

Fig. S14. Top view (a-b) and side view (c-d) HRTEM images of the typical perovskite $CsPbBr_3$ NPLs collected from the top layer dispersion by centrifugation selection. The samples were synthesized in the open air, with Sn:Pb precursor ratios of 2:10 (a,c) and 5:10 (b,d), respectively. Each scale bar is 5 nm. The Sn precursor was SnBr₂.

Fig. S15. Multi-peak fitting of the PL spectra for the $CsPbBr_3$ nanocrystals achieved with precursor Sn:Pb ratios of 1:10 (a), 2:10 (b), 3:10 (c), 4:10 (d) and 5:10 (e). The multi-peak-emitting spectra were fitted by the type of Gaussian.

Fig. S16. TEM images (a-c), optical absorbance spectra and PL (d) and XRD patterns (e) of the aliquots of the CsPbBr₃ nanocrystals achieved at different temperatures as dictated, in the presence of precursor Sn:Pb ratios of 2:10 in the open air.

Fig. S17. Optical absorbance spectra and PL (a) and XRD patterns (b) of the aliquots of the $CsPbBr_3$ nanocrystals achieved at different temperatures as dictated, in the presence of precursor Sn:Pb ratios of 2:10 in the open air.

6. Characterization of the CsPbCl_{3-x}Br₃ nanocrystals synthesized in the presence of SnCl₂ in the open air

Fig. S18. (a-d) TEM images and (e-f) XRD patterns of the perovskite $CsPbCl_{3-x}Br_3$ nanocrystals achieved in the presence of $SnCl_2$, in the open air, with precursor Sn:Pb ratios of 1:10 (a), 2:10 (b), 3:10 (c) and 4:10 (d), respectively. Panels b-e) display NPLs both standing edge-on perpendicular to the substrate and laying on the substrate.

Fig. S19. (a-c) Deconvolution of the PL spectra collected on the perovskite $CsPbCl_{3-x}Br_3$ nanocrystals of the $CsPbCl_{3-x}Br_3$ nanocrystals achieved in the presence of $SnCl_2$, in the open air, with different precursor Sn:Pb ratios as dictated. For data fitting, a doublet was used for each

PL spectrum. (d) *PL* peak wavelength positions of the fitted peaks of the various $CsPbCl_{3-x}Br_3$ nanocrystals achieved with different precursor Sn:Pb ratios.

Fig. S20. Tauc plots of various $CsPbCl_{3-x}Br_3$ nanocrystals formed in the presence of different precursor Sn:Pb ratios as dictated. The samples are prepared in the open air, in the presence of $SnBr_2$ in the open air.

Fig. S21. Survey XPS of the Sn-directed synthesized $CsPbBr_3$ nanocrystals and $CsPbCl_xBr_{3-x}$ in the open air, in the presence of $SnBr_2$ and $SnCl_2$, respectively. It is noteworthy that no Sn signal can be observed in all the as-synthesized samples. Cl signals is present in the sample collected when $SnCl_2$ is added.

Table S2. Photoluminesence quantum yields (PLQY) of the various $CsPbBr_3$ and $CsPbCl_xBr_{3-x}$ perovskite nanocrystals.

Samples	PLQY (%)
CsPbBr ₃ nanocrystals achieved in the absence of any Sn species	19.67
CsPbBr ₃ nanocrystals achieved with precursor SnBr ₄ :PbBr ₂ ratio of 2:10	29.30
$CsPbCl_xBr_{3-x}$ nanocrystals achieved with precursor $SnCl_4$: PbBr ₂ ratio of 2:10	37.60
CsPbBr ₃ nanocrystals achieved with precursor SnBr ₂ :PbBr ₂ ratio of 3:10	80.20
CsPbCl _x Br _{3-x} nanocrystals achieved with precursor SnCl ₂ :PbBr ₂ ratio of 2:10	43.60

7. Characterization of the CsPbBr₃ nanocrystals synthesized in the presence of NaBr, tin acetate and TiCl₄, respectively

Fig. S22. Optical absorbance spectra and PL the $CsPbBr_3$ nanocrystals achieved in the presence of excess NaBr by fixing the NaBr:PbBr_2=120:100.

Fig. S23. (a-c) Optical absorbance spectra and PL and (d) XRD patterns of the various $CsPbBr_3$ nanocrystals achieved with different amounts of $Sn(OAc)_2$ (labelled as Sn:Pb) as dictated, in the open air.

Fig. S24. Optical absorbance spectra and PL of the $CsPbCl_xBr_{3-x}$ *nanocrystals synthesized in the presence of different amounts of* $TiCl_4$ *(labelled as* Ti:Pb *ratio), at argon atmosphere.*

8. Characterization of the WLED devices

Fig. S25. CCT and CRI (a), and EQE (b) values of the CsPbBr₃-based WLED lamp under different drive currents

Fig. S26. CCT and *CRI* (*a*), and *EQE* (*b*) values of the Sn-CsPbBr₃-based WLED lamp under different drive currents.

WLED	I(mA)	CIE(x)	CIE(y)	CRI	CCT (K)	EQE	Luminous
							efficacy
							(lm/W)
1	20	0.3269	0.3554	77.9	5730	0.78%	1.53
2	60	0.3283	0.3481	77.5	5680	0.91%	1.68
3	120	0.3305	0.3434	77.1	5585	0.89%	1.57
4	180	0.3328	0.338	76.6	5484	0.85%	1.41
5	240	0.3345	0.3322	75.8	5401	0.81%	1.28
6	300	0.3357	0.3255	74.2	5332	0.76%	1.16

*Table S3. CIE color coordinates (x, y), CRI, CCT, EQE and luminous efficacy of CsPbBr*₃*-based WLED.*

Table S4. CIE color coordinates (x, y), CRI, CCT, EQE and luminous efficacy of Sn-CsPbBr₃based WLED.

WLED	I(mA)	CIE(x)	CIE(y)	CRI	CCT(K)	EQE	Luminous
							efficacy
							(lm/W)
1	20	0.3513	0.3634	83.1	4820	1.42%	2.83
2	40	0.3516	0.3512	82.7	4752	1.34%	2.72
3	60	0.3547	0.3455	82.4	4607	1.27%	2.27
4	80	0.3574	0.3412	82.2	4478	1.19%	2.06
5	100	0.3597	0.3366	81.5	4356	1.11%	1.83
6	120	0.3615	0.3328	80.9	4261	1.00%	1.62

9. Anions exchange on the as-synthesized CsPbBr₃ nanocrystals

Preparation of PbCl₂ and PbI₂ stock solution. PbX₂ (X=Cl, I) stock solutions were prepared by using modified procedures previously-reported by Manna and co-workers. In the case of PbCl₂ solution, PbCl₂ (83.3 mg, 0.3 mmol), TOP (1.0 ml), OA (0.5 mL), OM (0.5 ml), and ODE (7.5 ml) were loaded into a 50 mL three-neck flask. The temperature was then raised to 140 °C under vacuum and kept at 140 °C for 60 min. The resulting PbBr₂ stock solution was cooled to RT, transferred to a vial and stored in the glove box for further use. For PbI₂ solution, PbI₂ (138 mg, 0.4 mmol), OA (0.375 ml), OM (0.375 ml), and ODE (7.5 ml) were loaded into a 50 ml three-neck flask, followed by raising the temperature to 130 °C under vacuum and keeping it for 60 min. The resulting PbI₂ stock solution was cooled to RT for further use.

Anion exchange reactions. Anion exchange was performed in the Ar-filled glovebox, by using a modified procedure described by Akkerman *et al.*^[1] Typically, different quantities (normally ranging from 10 to 500 μ L) of 0.06 M halide precursors solution were swiftly injected in 10 vials, each holding 3 mL of diluted crude CsPbBr₃ NC solution (in haxane). The reactions were kept for 1 h and the dispersions were transferred in the cuvettes for subsequent optical tests.

Both the UV-Vis absorption and PL emission spectra of the CsPbCl_xBr_{3-x} nanocrystals collected by ion exchange with Cl⁻ showed a blue shift with increasing the PbCl₂ fraction in the exchange reaction (Fig. S36). However, the UV-Vis-NIR absorption and PL emission spectra of the CsPbI_xBr_{3-x} nanocrystals collected by ion exchange with I⁻ are red-shifted after the introduction of I⁻ ions (Fig. S37). We noticed that the nanocrystals are not stable and the increasing amount of I⁻ or Cl⁻ ions led to the damping intensity of the shorter wavelength emission.

Fig. S27. (a) Optical absorbance spectra and (b) PL spectra of the various $CsPbCl_xBr_{3-x}$ nanocrystals achieved by anion exchange of the as-synthesized CsPbBr3 in the presence of different amounts of Cl⁻ ions as dictated. The top panel presents the photographs of corresponding nanocrystals dispersed in hexane under UV light illumination (355 nm excitation wavelength).

Fig. S28. (a) Optical absorbance spectra and (b) PL spectra of the various $CsPbI_xBr_{3-x}$ nanocrystals achieved by anion exchange of the as-synthesized CsPbBr3 in the presence of different amounts of I ions as dictated. The top panel presents the photographs of corresponding nanocrystals dispersed in hexane under UV light illumination (355 nm excitation wavelength).

References

[1] Q.A. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions, J. Am. Chem. Soc. 137 (2015) 10276-10281.